A247603 Least integer m > 0 with pi(m*n) = sigma(m), where sigma(m) is the sum of all positive divisors of m.
1, 2, 23, 61, 8, 22, 16, 12, 202, 386, 30, 36, 174, 10745, 1684, 2804, 1616, 40006, 6764, 996, 5775, 8131355, 19974, 11264, 4446, 27882, 4848, 32466, 162712, 532313373, 2341816, 30864, 14544, 63696, 2880, 390990, 135200, 133992, 1331840, 11621646, 117990
Offset: 2
Keywords
Examples
a(3) = 2 since pi(3*2) = 3 = sigma(2), and pi(3*1) = 2 > sigma(1) = 1.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 2..53
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
Programs
-
Mathematica
Do[m=1;Label[aa];If[PrimePi[n*m]==DivisorSigma[1,m],Print[n," ",m];Goto[bb]];m=m+1;Goto[aa]; Label[bb];Continue,{n,2,30}]
Extensions
a(31)-a(42) from Hiroaki Yamanouchi, Oct 04 2014
Comments