cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A247869 (prime(A247824(n)) + prime(n)) / (A247824(n) + n).

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 4, 5, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 6, 5, 5, 5, 6, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 5, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 27 2014

Keywords

Crossrefs

Programs

  • Haskell
    a247869 n = (a000040 (a247824 n) + a000040 n) `div` (a247824 n + n)

A247937 Least integer m > n such that m + n divides F(m) + F(n), where F(k) refers to the Fibonacci number A000045(k).

Original entry on oeis.org

5, 22, 9, 8, 8, 18, 10, 16, 21, 14, 35, 24, 17, 34, 21, 32, 20, 30, 31, 28, 87, 26, 47, 36, 28, 46, 63, 32, 80, 42, 151, 40, 75, 38, 38, 60, 113, 39, 51, 56, 109, 49, 307, 52, 63, 50, 50, 72, 101, 70, 57, 68, 97, 66, 58, 64, 93, 62, 191, 84
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 27 2014

Keywords

Comments

Conjecture: Let A be any integer not congruent to 3 modulo 6. Define u(0) = 0, u(1) = 1, and u(n+1) = A*u(n) + u(n-1) for n > 0. Then, for any integer n > 0, there are infinitely many positive integers m such that m + n divides u(m) + u(n).
This implies that a(n) exists for any n > 0.

Examples

			a(2) = 22 since 22 + 2 = 24 divides F(22) + F(2) = 17711 + 1 = 17712 = 24*738.
		

Crossrefs

Programs

  • Mathematica
    Do[m=n+1;Label[aa];If[Mod[Fibonacci[m]+Fibonacci[n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]

A247940 Least integer m > n such that m + n divides L(m) + L(n), where L(k) refers to the Lucas number A000032(k).

Original entry on oeis.org

5, 5, 15, 5, 19, 30, 17, 19, 15, 13, 13, 24, 35, 236, 33, 34, 31, 90, 29, 23, 27, 25, 25, 84, 47, 80, 45, 190, 43, 54, 41, 35, 39, 1216, 37, 72, 59, 212, 57, 43, 55, 66, 53, 86, 51, 76, 49, 60, 71, 53, 69, 55, 67, 222, 65, 122, 63, 112, 61, 264
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 27 2014

Keywords

Comments

Conjecture: Let A be any integer not congruent to 3 modulo 6. Define v(0) = 2, v(1) = A, and v(n+1) = A*v(n) + v(n-1) for n > 0. Then, for any integer n > 0, there are infinitely many positive integers m such that m + n divides v(m) + v(n).
This implies that a(n) exists for any n > 0.

Examples

			 a(3) = 15 since 15 + 3 = 18 divides L(15) + L(3) = 1364 + 4 = 18*76.
		

Crossrefs

Programs

  • Mathematica
    Do[m=n+1;Label[aa];If[Mod[LucasL[m]+LucasL[n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]

A248004 Least positive integer m with prime(m*n) == 1 (mod m+n).

Original entry on oeis.org

3, 4, 1, 2, 2, 15, 1, 1, 5, 10, 2, 3, 4, 18, 6, 27, 4, 7, 35, 4, 45, 2, 47, 9, 5, 10, 16, 11, 3, 3, 9, 61, 1, 52, 3, 60, 53, 74, 8, 47, 7, 60, 128, 5, 21, 12, 2, 29, 15, 127, 53, 28, 17, 21, 303, 80, 72, 8, 61, 36
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 29 2014

Keywords

Comments

Conjecture: (i) a(n) exists for any n > 0. Moreover, a(n) does not exceed n*(n-1)/2 if n > 2.
(ii) For each positive integer n, there is an integer m > 0 with prime(m*n) == -1 (mod m+n). Moreover, we may require that m does not exceed n*(n-1)/2 if n > 2.

Examples

			a(2) = 4 since prime(2*4) = 19 is congruent to 1 modulo 2 + 4 = 6.
a(5146) = 593626 since prime(5146*593626) = prime(3054799396) = 73226821741 is congruent to 1 modulo 5146 + 593626 = 598772.
		

Crossrefs

Programs

  • Mathematica
    Do[m=1;Label[aa];If[Mod[Prime[m*n],m+n]==1,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
    lpim[n_]:=Module[{m=1},While[Mod[Prime[m*n],m+n]!=1,m++];m]; Array[lpim,60] (* Harvey P. Dale, Oct 01 2017 *)

A248124 Least integer m > 0 such that gcd(m,n) = 1 and (m+n) | (C(m)+C(n)), where C(k) refers to the k-th Catalan number, binomial(2k,k)/(k+1).

Original entry on oeis.org

1, 19, 1, 20, 1, 95, 1, 4, 1, 242, 241, 478, 1, 23, 1, 5, 7, 109, 1, 17, 1, 227, 467, 37, 1, 209, 1, 330, 2077, 17, 1073, 816, 1, 27, 109, 71, 1, 43, 1, 41, 145, 151, 1, 43, 1, 59, 71, 587, 1, 87, 1775, 344, 1773, 1127, 1, 49, 1
Offset: 4

Views

Author

Zhi-Wei Sun, Oct 01 2014

Keywords

Comments

Conjecture: a(n) exists for all n > 3.

Examples

			a(5) = 19 since 5 is relatively prime to 19 and 5 + 19 = 24 divides C(5) + C(19) = 42 + 1767263190 = 1767263232 = 24*73635968.
		

Crossrefs

Programs

  • Mathematica
    Do[m=1;Label[aa];If[GCD[m,n]==1&&Mod[CatalanNumber[m]+CatalanNumber[n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,4,60}]

A247975 Least positive integer m such that m + n divides prime(m)^2 + prime(n)^2.

Original entry on oeis.org

1, 8, 15479, 30, 29, 68, 51, 2, 73, 15, 39, 13, 12, 36, 10, 25, 33, 8, 15, 38, 40, 108, 42, 1, 16, 39, 31, 57, 5, 4, 27, 2, 17, 51, 30, 14, 36, 20, 11, 21, 32, 23, 39, 689, 29, 4, 27, 1873, 184, 7248, 7, 153, 132, 76, 75, 18, 28, 99, 2, 86
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 28 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 0. - Zhi-Wei Sun, Sep 28 2014
If a(i) = j, then a(j) <= i. - Derek Orr, Sep 28 2014

Examples

			a(2) = 8 since 8 + 2 = 10 divides prime(8)^2 + prime(2)^2 = 19^2 + 3^2 = 370.
a(3) = 15479 since 15479 + 3 = 15482 divides prime(15479)^2 + prime(3)^2 = 169789^2 + 5^2 = 28828304546 = 15482*1862053.
a(4703) = 760027770 since 760027770 + 4703 = 760032473 divides prime(760027770)^2 + prime(4703)^2 = 17111249191^2 + 45329^2 = 292794848878552872722 = 760032473*385239919714.
		

Crossrefs

Programs

  • Mathematica
    Do[m = 1; Label[aa]; If[Mod[Prime[m]^2 + Prime[n]^2, m + n] == 0, Print[n, " ", m]; Goto[bb]]; m = m + 1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
  • PARI
    a(n)=m=1;while((prime(m)^2+prime(n)^2)%(m+n),m++);m
    vector(75,n,a(n)) \\ Derek Orr, Sep 28 2014

A248125 Least positive integer m such that m + n divides C(2m,m) + C(2n,n), where C(2k,k) = (2k)!/(k!)^2.

Original entry on oeis.org

1, 2, 5, 16, 3, 6, 2, 22, 101, 6, 21, 86, 43, 16, 15, 4, 3, 6, 21, 20, 11, 8, 49, 48, 7, 22, 29, 28, 27, 26, 25, 49, 11, 29, 133, 20, 19, 22, 71, 70, 7, 18, 13, 46, 11, 14, 25, 24, 23, 93, 45, 80, 43, 67, 29, 286, 171, 102, 97, 38
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 01 2014

Keywords

Comments

Conjecture: a(n) exists for all n > 0. Moreover, for n > 66 we have a(n) < n except for n = 364, 408.
a(n) = n for n = 1, 2, 6, 15, 20, 28, 66, ... The next term, if it exists, is greater than 10^4. - Derek Orr, Oct 01 2014

Examples

			a(3) = 5 since 3 + 5 = 8 divides C(6,3) + C(10,5) = 20 + 252 = 272.
		

Crossrefs

Programs

  • Mathematica
    Do[m=1;Label[aa];If[Mod[Binomial[2m,m]+Binomial[2n,n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
  • PARI
    a(n)=m=1;while((binomial(2*m,m)+binomial(2*n,n))%(m+n),m++);m
    vector(100,n,a(n)) \\ Derek Orr, Oct 01 2014

A248133 Least positive integer m such that m + n divides T(m) + T(n), where T(.) is given by A002426.

Original entry on oeis.org

1, 3, 1, 1, 7, 2, 2, 2, 1, 1, 7, 4, 37, 145, 35, 1, 25, 16, 5, 16, 1, 1, 18, 19, 3, 11, 41, 1, 7, 2, 48, 415, 1, 2, 15, 7, 13, 34, 97, 1, 27, 18, 56, 22, 1, 1, 5, 26, 22, 36, 18, 1, 117, 52, 376, 11, 1, 1, 23, 26
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 02 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 0. Moreover, a(n) <= n^2 - n + 1 except for n = 274.
Note that a(274) = 188847 > 2*274^2.

Examples

			a(5) = 7 since 5 + 7 divides T(5) + T(7) = 51 + 393 = 444 = 12*37.
a(2539) = 643425 since 2539 + 643425 = 645964 divides T(2539) + T(643425).
		

Crossrefs

Programs

  • Mathematica
    T[n_]:=Sum[Binomial[n,2k]Binomial[2k,k],{k,0,n/2}]
    Do[m=1;Label[aa];If[Mod[T[m]+T[n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]

A248136 Least positive integer m such that m + n divides D(m) + D(n), where D(.) is given by A001850.

Original entry on oeis.org

1, 20, 3, 6, 1, 4, 200, 299, 5, 29, 4, 119, 5, 61, 3, 3, 6, 64, 31, 2, 21, 35, 6, 2974, 17, 1052, 27, 109, 10, 4, 3, 50, 65, 177, 22, 29, 5, 25, 15, 29, 29, 584, 83, 163, 9, 152, 19, 19, 29, 32, 15, 35, 4, 25, 239, 1122, 185, 76, 35, 97
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 02 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 0.

Examples

			a(2) = 20 since 2 + 20 = 22 divides D(2) + D(20) = 13 + 260543813797441 = 260543813797454 = 22*11842900627157.
		

Crossrefs

Programs

  • Mathematica
    d[n_]:=Sum[Binomial[n,k]Binomial[n+k,k],{k,0,n}]
    Do[m=1;Label[aa];If[Mod[d[m]+d[n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]

A248137 Least positive integer m such that m + n divides M(m) + M(n), where M(.) is given by A001006.

Original entry on oeis.org

1, 1, 244, 1, 23, 4, 1, 1, 3494, 1, 68058, 4, 20, 18, 35, 1, 4, 14, 32, 13, 21, 1, 5, 22, 172, 7, 8, 1, 1, 28, 14, 19, 2, 178, 15, 227, 2, 6, 109, 1, 22, 122, 47, 22, 126, 1, 43, 60, 41, 18, 24, 1, 13, 23, 21, 24, 126, 1, 152, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 02 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 0.

Examples

			a(5) = 23 since 5 + 23 = 28 divides M(5) + M(23) = 21 + 1129760415 = 1129760436 = 28*40348587.
		

Crossrefs

Programs

  • Mathematica
    M[n_]:=Sum[Binomial[n,2k]Binomial[2k,k]/(k+1),{k,0,n/2}]
    Do[m=1;Label[aa];If[Mod[M[m]+M[n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
Showing 1-10 of 22 results. Next