A247602 Least positive integer m with pi(m*n) = phi(m+n), where pi(.) is the prime-counting function and phi(.) is Euler's totient function.
3, 2, 1, 91, 6, 5, 1, 5, 1, 8041, 15870, 39865, 1, 251625, 637064, 1829661, 4124240, 10553093, 1, 69709253, 179992156, 465769749, 1210576800, 3140421235, 13974959892
Offset: 1
Examples
a(1) = 3 since pi(1*3) = 2 = phi(1+3).
Links
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
Programs
-
Mathematica
Do[m=1;Label[aa];If[PrimePi[n*m]==EulerPhi[m+n],Print[n," ",m];Goto[bb]];m=m+1;Goto[aa]; Label[bb];Continue,{n,1,20}] Table[m = 1; While[PrimePi[n*m] != EulerPhi[m + n], m++]; m, {n, 1, 13}] (* Robert Price, Sep 08 2019 *)
-
PARI
a(n) = {my(m = 1); while (primepi(m*n) != eulerphi(m+n), m++); m;} \\ Michel Marcus, Sep 22 2014
Extensions
a(21)-a(25) from Hiroaki Yamanouchi, Oct 04 2014
Comments