A247631 Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part.
8, 9, 10, 11, 14, 20, 24, 28, 37, 47, 51, 54, 57, 58, 59, 62, 63, 69, 81, 82, 85, 92, 106, 121, 128, 129, 147, 148, 149, 150, 161, 162, 165, 168, 181, 182, 183, 186, 190, 200, 201, 214, 217, 218, 219, 225, 226, 227, 228, 232, 236, 241, 245, 248, 249, 258
Offset: 1
Examples
r has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, ... s has binary digits 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ... so that a(1) = 8 and a(2) = 9.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1181
Programs
-
Mathematica
z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[8]]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; Flatten[Position[t1, 1]] (* A247631 *) Flatten[Position[t2, 1]] (* A247632 *) Flatten[Position[t3, 1]] (* A247633 *) Flatten[Position[t4, 1]] (* A247634 *)
Comments