A247633 Numbers k such that d(r,k) = 1 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part.
3, 5, 7, 13, 19, 23, 27, 36, 41, 46, 50, 53, 56, 61, 65, 68, 71, 77, 80, 84, 88, 91, 95, 99, 101, 103, 105, 108, 110, 112, 118, 120, 127, 133, 135, 138, 143, 146, 152, 156, 158, 160, 164, 167, 172, 176, 178, 180, 185, 189, 194, 197, 199, 203, 208, 210, 213
Offset: 1
Examples
r has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, ... s has binary digits 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ... so that a(1) = 1 and a(2) = 4.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1096
Programs
-
Mathematica
z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[8]]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; Flatten[Position[t1, 1]] (* A247631 *) Flatten[Position[t2, 1]] (* A247632 *) Flatten[Position[t3, 1]] (* A247633 *) Flatten[Position[t4, 1]] (* A247634 *)
Comments