A247631
Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part.
Original entry on oeis.org
8, 9, 10, 11, 14, 20, 24, 28, 37, 47, 51, 54, 57, 58, 59, 62, 63, 69, 81, 82, 85, 92, 106, 121, 128, 129, 147, 148, 149, 150, 161, 162, 165, 168, 181, 182, 183, 186, 190, 200, 201, 214, 217, 218, 219, 225, 226, 227, 228, 232, 236, 241, 245, 248, 249, 258
Offset: 1
r has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, ...
s has binary digits 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ...
so that a(1) = 8 and a(2) = 9.
-
z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[8]];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A247631 *)
Flatten[Position[t2, 1]] (* A247632 *)
Flatten[Position[t3, 1]] (* A247633 *)
Flatten[Position[t4, 1]] (* A247634 *)
A247632
Numbers k such that d(r,k) = 0 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part.
Original entry on oeis.org
1, 4, 6, 12, 15, 21, 25, 29, 38, 42, 48, 52, 55, 60, 64, 66, 70, 72, 78, 83, 86, 89, 93, 96, 100, 102, 104, 107, 109, 111, 113, 119, 122, 130, 134, 136, 139, 144, 151, 153, 157, 159, 163, 166, 169, 173, 177, 179, 184, 187, 191, 195, 198, 202, 204, 209, 211
Offset: 1
r has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, ...
s has binary digits 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ...
so that a(1) = 1 and a(2) = 4.
-
z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[8]];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A247631 *)
Flatten[Position[t2, 1]] (* A247632 *)
Flatten[Position[t3, 1]] (* A247633 *)
Flatten[Position[t4, 1]] (* A247634 *)
A247634
Numbers k such that d(r,k) = 1 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part.
Original entry on oeis.org
2, 16, 17, 18, 22, 26, 30, 31, 32, 33, 34, 35, 39, 40, 43, 44, 45, 49, 67, 73, 74, 75, 76, 79, 87, 90, 94, 97, 98, 114, 115, 116, 117, 123, 124, 125, 126, 131, 132, 137, 140, 141, 142, 145, 154, 155, 170, 171, 174, 175, 188, 192, 193, 196, 205, 206, 207, 212
Offset: 1
r has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, ...
s has binary digits 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ...
so that a(1) = 1 and a(2) = 4.
-
z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[8]];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A247631 *)
Flatten[Position[t2, 1]] (* A247632 *)
Flatten[Position[t3, 1]] (* A247633 *)
Flatten[Position[t4, 1]] (* A247634 *)
Showing 1-3 of 3 results.
Comments