A247644 Triangle formed from the odd-numbered rows of A088855.
1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 9, 9, 9, 3, 1, 1, 4, 16, 24, 36, 24, 16, 4, 1, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 1, 6, 36, 90, 225, 300, 400, 300, 225, 90, 36, 6, 1, 1, 7, 49, 147, 441, 735, 1225, 1225, 1225, 735, 441, 147, 49, 7, 1, 1, 8, 64, 224, 784, 1568, 3136, 3920, 4900, 3920, 3136, 1568, 784, 224, 64, 8, 1
Offset: 1
Examples
Triangle begins: 1, 1,1,1, 1,2,4,2,1, 1,3,9,9,9,3,1, 1,4,16,24,36,24,16,4,1, 1,5,25,50,100,100,100,50,25,5,1, 1,6,36,90,225,300,400,300,225,90,36,6,1, 1,7,49,147,441,735,1225,1225,1225,735,441,147,49,7,1, 1,8,64,224,784,1568,3136,3920,4900,3920,3136,1568,784,224,64,8,1, ...
Links
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
Crossrefs
Programs
-
Mathematica
row[n_] := CoefficientList[Sum[Binomial[n, k]^2 *x^(2*k), {k, 0, n}] + Sum[Binomial[n, k]*Binomial[n, k - 1]* x^(2*k - 1), {k, 0, n}], x]; Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 07 2018 *)
-
PARI
T(n, k) = binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2); \\ A088855 row(n) = vector(2*n-1, k, T(2*n-1, k)); \\ Michel Marcus, Sep 27 2021
Extensions
Row n=8 corrected by Jean-François Alcover, Jun 07 2018
Offset changed to 1 by Georg Fischer, Sep 27 2021
Comments