A250029 Maximum number of binary strings with symmetrically partitioned n 1's and n 0's, counted up to isomorphism.
1, 1, 1, 4, 9, 16, 36, 144, 400, 900, 3600, 11025, 28224, 78400, 254016, 705600, 2286144, 6350400, 25401600, 85377600, 250905600, 768398400, 3073593600, 10600761600, 32464832400, 129859329600, 456536705625
Offset: 0
Keywords
Examples
n=0 gives the empty string. n=1 and the only possible partition generate 01 (and the isomorphic 10). For n=2, both possible partitions generate, up to isomorphism, 1 string, 0011 (1100), and respectively 0101 (1010). For n=3, the optimal partition is {1,2}, generating, up to isomorphism, 4 strings: 001011 (110100), 001101 (110010), 010011 (101100) and 011001 (100110). For n=4, the optimal partition is {1,1,2}, generating, up to isomorphism, 9 strings: 00101011 (11010100), 00101101 (11010010), 00110101 (11001010), 01001011 (10110100), 01001101 (10110010), 01010011 (10101100), 01011001 (10100110), 01100101 (10011010) and 01101001 (10010110).
Programs
-
Mathematica
dualseq[p_]:=Factorial[Length[p]]^2/Apply[Times,Map[Factorial[Count[p,#1]]&,Range[Max[Length[p]]]]]^2 a[n_]:=Max[Map[dualseq,IntegerPartitions[n]]] Table[a[n],{n,0,25}] (* after A130670 *)
Formula
a[n]=Max[m!^2/(Prod_j(m_j!))^2] where Sum_j(m_j)=m, Sum_j(j*m_j)=n, over all partitions of n.
Comments