A255404 Number of different integer partitions of n that produce the maximum number of set partitions for a set of cardinality n.
1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 3, 2, 1, 4, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 6, 4, 1, 2, 1, 5, 5, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 5, 2, 2, 1, 1, 4, 1, 1, 2, 3, 1, 8, 2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 3, 2, 1, 1, 1, 1
Offset: 0
Keywords
Examples
For n=9, {1,1,2,2,3} maximizes the number of set partitions, while for n=10, this number is maximized by {1,2,3,4}, {1,1,2,3,3}, {1,2,2,2,3} and {1,1,1,2,2,3}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Prod[l_] := Apply[Times, Map[#! &, l]]* Apply[Times, Map[Count[l, #]! &, Range[Max[Length[l]]]]] b[n_] := (Min[Map[Prod, IntegerPartitions[n]]]) a[n_] := Count[Map[Prod, IntegerPartitions[n]], b[n]] Table[a[n], {n, 0, 20}] (* after A102356 *)
Extensions
More terms from Alois P. Heinz, Feb 25 2015
Comments