cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247675 Decimal expansion of the integral over the square [-1,1]x[-1,1] of 1/sqrt(1+x^2+y^2) dx dy.

Original entry on oeis.org

3, 1, 7, 3, 4, 3, 6, 4, 8, 5, 3, 0, 6, 0, 7, 1, 3, 4, 2, 1, 9, 1, 7, 5, 6, 4, 6, 7, 0, 4, 5, 5, 3, 8, 5, 1, 9, 9, 7, 6, 4, 8, 1, 6, 1, 9, 6, 1, 9, 9, 9, 5, 3, 7, 1, 7, 5, 7, 2, 5, 9, 2, 9, 9, 4, 7, 6, 6, 2, 9, 8, 0, 4, 1, 4, 1, 6, 3, 6, 5, 7, 1, 8, 7, 8, 1, 8, 6, 1, 7, 0, 2, 3, 8, 9, 9, 5, 7, 5, 5, 5, 7, 1
Offset: 1

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			3.17343648530607134219175646704553851997648161961999537...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 4*Log(2 + Sqrt(3)) - 2*Pi(R)/3; // G. C. Greubel, Aug 31 2018
  • Mathematica
    RealDigits[4*Log[2 + Sqrt[3]] - 2*Pi/3, 10, 103] // First
  • PARI
    default(realprecision, 100); 4*log(2 + sqrt(3)) - 2*Pi/3 \\ G. C. Greubel, Aug 31 2018
    

Formula

Equals 4*log(2 + sqrt(3)) - 2*Pi/3.