A247680 Number of tilings of a 5 X n rectangle using n pentominoes of shapes W, I, L, F.
1, 1, 3, 5, 21, 82, 249, 688, 1879, 5690, 17932, 55271, 164427, 485348, 1451110, 4395114, 13313135, 40073992, 120200822, 360897368, 1086543152, 3274191643, 9858847241, 29657925485, 89206237151, 268435863317, 808022052324, 2432169981689, 7319562671432
Offset: 0
Keywords
Examples
a(3) = 5: ._____. ._____. ._____. ._____. ._____. | | | | | |_. | | ._| | | | ._| |_. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |_| |_| | | | |_| | | |_| | |_|_|_| |_|___| |___|_| |_|___| |___|_|. a(4) = 21: ._______. ._______. |_. |_. | | ._| ._| | |_. | | | |_. | | |_. |_| | | | |_| | | |___|_| |_| ._| | |_______| |___|___| ... .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, G.f. and the recurrence (of order 324)
- Wikipedia, Pentomino
Formula
a(n) ~ c * d^n, where d = 3.009533036298033336764263169394953980849599088993157702490314631810945318907..., c = 0.29272000293879867768013500033525343337565088925220444775140709413075274... (1/d is the root of the denominator, see g.f.). - Vaclav Kotesovec, May 19 2015