A247703 Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape I; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 4, 0, 1, 47, 8, 0, 1, 394, 94, 12, 0, 1, 2082, 1608, 282, 32, 0, 2, 15113, 8812, 3452, 512, 58, 0, 3, 111664, 73863, 22310, 5962, 790, 96, 0, 4, 789930, 631700, 218608, 45762, 9374, 1260, 142, 0, 5, 5388729, 5157928, 2067811, 491868, 81720, 15272, 1824, 196, 0, 6
Offset: 0
Examples
T(5,5) = 2: ._._._._._. ._________. | | | | | | |_________| | | | | | | |_________| | | | | | | |_________| | | | | | | |_________| |_|_|_|_|_| |_________| . Triangle T(n,k) begins: 00 : 1; 01 : 0, 1; 02 : 4, 0, 1; 03 : 47, 8, 0, 1; 04 : 394, 94, 12, 0, 1; 05 : 2082, 1608, 282, 32, 0, 2; 06 : 15113, 8812, 3452, 512, 58, 0, 3; 07 : 111664, 73863, 22310, 5962, 790, 96, 0, 4; 08 : 789930, 631700, 218608, 45762, 9374, 1260, 142, 0, 5;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Pentomino
Comments