A247707 Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape T; triangle T(n,k), n>=0, 0<=k<=max(0,floor(2*(n-1)/3)), read by rows.
1, 1, 5, 50, 6, 437, 62, 2, 3270, 700, 36, 21720, 5712, 506, 12, 160593, 48364, 5444, 282, 6, 1209537, 425638, 57648, 3836, 122, 8999307, 3578302, 576791, 48688, 2226, 40, 66054288, 29550476, 5500946, 558036, 33400, 1056, 10, 485082083, 239927980, 50762537, 6035146, 440480, 19180, 380
Offset: 0
Examples
T(4,2) = 2: ._____._. ._._____. |_. ._| | | |_. ._| | | |_. | | ._| | | | |_| | | | | |_| | | ._| |_| |_| |_. | |_|_____| |_____|_| . Triangle T(n,k) begins: 00 : 1; 01 : 1; 02 : 5; 03 : 50, 6; 04 : 437, 62, 2; 05 : 3270, 700, 36; 06 : 21720, 5712, 506, 12; 07 : 160593, 48364, 5444, 282, 6; 08 : 1209537, 425638, 57648, 3836, 122; 09 : 8999307, 3578302, 576791, 48688, 2226, 40; 10 : 66054288, 29550476, 5500946, 558036, 33400, 1056, 10;
Links
- Alois P. Heinz, Rows n = 0..175, flattened
- Wikipedia, Pentomino
Comments