cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247748 Total area below all lattice paths from (0,0) to (n,0) that do not go below the x-axis or above the diagonal x=y and consist of steps u=(1,1), U=(1,3), H=(1,0), d=(1,-1) and D=(1,-3).

Original entry on oeis.org

0, 0, 1, 4, 29, 128, 683, 3048, 15631, 73584, 367878, 1766272, 8772765, 42778568, 212026492, 1041894304, 5164955809, 25511089124, 126587331646, 627213797064, 3115744498691, 15471098709336, 76936461658184, 382598697899276, 1904401873987964, 9480893249387192
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2014

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or xp+[0, p[1]*(y+j/2)])
           (b(x-1, y+j)), j=[-1, -3, 0, 1, 3])))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_] := b[x, y] = If[y < 0 || x < y, {0, 0},
         If[x == 0, {1, 0}, Sum[Function[p, p + {0, p[[1]]*(y + j/2)}][
         b[x - 1, y + j]], {j, {-1, -3, 0, 1, 3}}]]];
    a[n_] := b[n, 0][[2]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k>=1} k * A247749(n,k).