cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247793 Least integer m > 0 such that pi(m*n) divides prime(m) + prime(n), where pi(x) denotes the number of primes not exceeding x.

Original entry on oeis.org

2, 1, 75, 10, 18, 1, 75, 41, 58, 2, 94, 107, 14, 13, 2, 14, 14, 1, 84, 527, 124, 715, 13, 4, 1, 4, 276, 310, 2, 4, 11216, 3074, 3470, 14, 2, 15, 5, 947, 538839, 2, 8, 2, 1592, 4, 8, 16813, 2293, 1, 2755, 3007, 3272, 32203, 5357440, 6, 17, 17, 374252, 9, 17, 6905
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 23 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 0.

Examples

			a(4) = 10 since pi(4*10) = 12 divides prime(4) + prime(10) = 7 + 29 = 36.
		

Crossrefs

Programs

  • Haskell
    a247793_list = 2 : f (zip [2..] $ tail a000040_list) where
       f ((x, p) : xps) = m : f xps where
         m = head [y | y <- [1..], (p + a000040 y) `mod` a000720 (x * y) == 0]
    -- Reinhard Zumkeller, Sep 24 2014
  • Mathematica
    Do[m=1;Label[aa];If[m*n>1&&Mod[Prime[m]+Prime[n],PrimePi[m*n]]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]