A247793 Least integer m > 0 such that pi(m*n) divides prime(m) + prime(n), where pi(x) denotes the number of primes not exceeding x.
2, 1, 75, 10, 18, 1, 75, 41, 58, 2, 94, 107, 14, 13, 2, 14, 14, 1, 84, 527, 124, 715, 13, 4, 1, 4, 276, 310, 2, 4, 11216, 3074, 3470, 14, 2, 15, 5, 947, 538839, 2, 8, 2, 1592, 4, 8, 16813, 2293, 1, 2755, 3007, 3272, 32203, 5357440, 6, 17, 17, 374252, 9, 17, 6905
Offset: 1
Keywords
Examples
a(4) = 10 since pi(4*10) = 12 divides prime(4) + prime(10) = 7 + 29 = 36.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
Programs
-
Haskell
a247793_list = 2 : f (zip [2..] $ tail a000040_list) where f ((x, p) : xps) = m : f xps where m = head [y | y <- [1..], (p + a000040 y) `mod` a000720 (x * y) == 0] -- Reinhard Zumkeller, Sep 24 2014
-
Mathematica
Do[m=1;Label[aa];If[m*n>1&&Mod[Prime[m]+Prime[n],PrimePi[m*n]]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
Comments