A247837 Primes p of the form sigma(2k-1) for a number k.
13, 31, 307, 1093, 1723, 2801, 3541, 5113, 8011, 10303, 17293, 19531, 28057, 30103, 30941, 86143, 88741, 147073, 292561, 459007, 492103, 552793, 579883, 598303, 684757, 704761, 732541, 735307, 797161, 830833, 1191373, 1204507, 1353733, 1395943, 1424443, 1482307
Offset: 1
Keywords
Examples
Prime 13 is in sequence because there is number 5 such that sigma(2*5-1) = sigma(9) = 13.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
Sort(b) where b is [a: n in [1..2500000] | IsPrime(a) where a is SumOfDivisors(2*n-1)];
-
Maple
isA247837 := proc(n) local i,opp; if isprime(n) then for i from 1 do opp := A061345(i) ; if numtheory[sigma](opp) = n then return true; elif opp > n then return false; end if; end do: else false; end if; end proc: for n from 2 do p := ithprime(n) ; if isA247837(p) then printf("%d,\n",p) ; end if; end do: # R. J. Mathar, Jun 04 2016
-
PARI
for(n=1,10^7,if(isprime(sigma(2*n-1)),print1(sigma(2*n-1),", "))) \\ Derek Orr, Sep 25 2014. ***WARNING: This program prints the terms not in correct order. - M. F. Hasler, Nov 16 2014
Formula
a(n) = sigma(2*A247820(n)-1) = A000203(2*A247820(n)-1). ***WARNING: This formula is not correct for all n. - M. F. Hasler, Nov 16 2014
The first discrepancy in the above formula is at n=11, where a(11) = A000203(2*A247820(12)-1) while A000203(2*A247820(11)-1)=a(12). - Robert Israel, Mar 31 2020
Extensions
Corrected and edited by Jaroslav Krizek, Nov 14 2014
Comments