cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247837 Primes p of the form sigma(2k-1) for a number k.

Original entry on oeis.org

13, 31, 307, 1093, 1723, 2801, 3541, 5113, 8011, 10303, 17293, 19531, 28057, 30103, 30941, 86143, 88741, 147073, 292561, 459007, 492103, 552793, 579883, 598303, 684757, 704761, 732541, 735307, 797161, 830833, 1191373, 1204507, 1353733, 1395943, 1424443, 1482307
Offset: 1

Views

Author

Jaroslav Krizek, Sep 24 2014

Keywords

Comments

Supersequence of A247836.
The multiplicity of the sigma-function means that the 2k-1 are odd prime powers 3^2, 5^2, 17^2, 3^6, 41^2,... (A061345), and the fact that sigma(k)>=k means that a numerical search for any candidate p can be limited to the prime powers less than p. - R. J. Mathar, Jun 04 2016

Examples

			Prime 13 is in sequence because there is number 5 such that sigma(2*5-1) = sigma(9) = 13.
		

Crossrefs

Programs

  • Magma
    Sort(b) where b is [a: n in [1..2500000] | IsPrime(a) where a is SumOfDivisors(2*n-1)];
    
  • Maple
    isA247837 := proc(n)
        local i,opp;
        if isprime(n) then
            for i from 1 do
                opp := A061345(i) ;
                if numtheory[sigma](opp) = n then
                    return true;
                elif opp > n then
                    return false;
                end if;
            end do:
        else
            false;
        end if;
    end proc:
    for n from 2 do
        p := ithprime(n) ;
        if isA247837(p) then
            printf("%d,\n",p) ;
        end if;
    end do: # R. J. Mathar, Jun 04 2016
  • PARI
    for(n=1,10^7,if(isprime(sigma(2*n-1)),print1(sigma(2*n-1),", "))) \\ Derek Orr, Sep 25 2014. ***WARNING: This program prints the terms not in correct order. - M. F. Hasler, Nov 16 2014

Formula

a(n) = sigma(2*A247820(n)-1) = A000203(2*A247820(n)-1). ***WARNING: This formula is not correct for all n. - M. F. Hasler, Nov 16 2014
The first discrepancy in the above formula is at n=11, where a(11) = A000203(2*A247820(12)-1) while A000203(2*A247820(11)-1)=a(12). - Robert Israel, Mar 31 2020

Extensions

Corrected and edited by Jaroslav Krizek, Nov 14 2014