cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247883 Consecutive exclusionary cubes: Digits of n are not present in n^3 and digits of n+1 are not present in (n+1)^3.

Original entry on oeis.org

2, 7, 47, 52, 187, 222, 477, 587, 5522, 6777
Offset: 1

Views

Author

Derek Orr, Sep 25 2014

Keywords

Comments

If it exists, a(11) > 10^7.
All terms == 2 (mod 5). - Robert Israel, Mar 10 2025

Crossrefs

Cf. A029785.

Programs

  • Maple
    filter:= proc(n) convert(convert(n,base,10),set) intersect convert(convert(n^3,base,10),set) = {} end proc:
    select(t -> filter(t) and filter(t+1), [seq(i,i=2..10^6, 5)]); # Robert Israel, Mar 10 2025
  • PARI
    for(n=1,10^6,s=digits(n);t=digits(n+1);s3=digits(n^3);t3=digits((n+1)^3);if(#vecsort(concat(s,s3),,8)==#vecsort(s,,8)+#vecsort(s3,,8)&&#vecsort(concat(t,t3),,8)==#vecsort(t,,8)+#vecsort(t3,,8),print1(n,", ")))
  • Python
    for n in range(10**6):
      s, t = str(n), str(n+1)
      s3, t3 = str(n**3), str((n+1)**3)
      c = 0
      for i in s:
        if s3.count(i):
          c += 1
          break
      for j in t:
        if t3.count(j):
          c += 1
          break
      if not c:
        print(n, end=', ')
    

Extensions

Definition corrected by Robert Israel, Mar 10 2025