A247903 Start with a single square; at n-th generation add a square at each expandable vertex (this is the "vertex to side" version); a(n) is the sum of all label values at n-th generation. (See comment for construction rules.)
1, 5, 13, 29, 53, 93, 149, 237, 357, 541, 789, 1165, 1669, 2429, 3445, 4973, 7013, 10077, 14165, 20301, 28485, 40765, 57141, 81709, 114469, 163613, 229141, 327437, 458501, 655101, 917237, 1310445, 1834725, 2621149, 3669717, 5242573, 7339717, 10485437
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of initial terms (vertex to side)
- Kival Ngaokrajang, Illustration of initial terms (side to vertex)
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,2).
Crossrefs
Programs
-
Magma
[2^(n/2+1)*((7+5*Sqrt(2)) + (-1)^n*(7-5*Sqrt(2))) -(8*n+27): n in [0..50]]; // G. C. Greubel, Feb 18 2022
-
Mathematica
LinearRecurrence[{2,1,-4,2}, {1,5,13,29}, 51] (* G. C. Greubel, Feb 18 2022 *)
-
PARI
{ b=0; a=1; print1(1, ", "); for (n=0, 50, b=b+2^floor(n/2); a=a+4*b; print1(a, ", ") ) }
-
PARI
Vec(-(2*x^3+2*x^2+3*x+1) / ((x-1)^2*(2*x^2-1)) + O(x^100)) \\ Colin Barker, Sep 26 2014
-
Sage
[2*2^(n/2)*((7+5*sqrt(2)) +(-1)^n*(7-5*sqrt(2))) -(8*n+27) for n in (0..50)] # G. C. Greubel, Feb 18 2022
Formula
a(0) = 1, for n >= 1, a(n) = 4*A027383(n) + a(n-1).
a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +2*a(n-4). - Colin Barker, Sep 26 2014
G.f.: (1+3*x+2*x^2+2*x^3)/((1-x)^2*(1-2*x^2)). - Colin Barker, Sep 26 2014
A(n) = 2^(n/2+1)*((1+sqrt(2))^3 + (-1)^n*(1-sqrt(2))^3) - (8*n + 27). - G. C. Greubel, Feb 18 2022
Extensions
More terms from Colin Barker, Sep 26 2014
Comments