A247904 Start with a single pentagon; at n-th generation add a pentagon at each expandable vertex (this is the "vertex to side" version); a(n) is the sum of all label values at n-th generation. (See comment for construction rules.)
1, 6, 21, 56, 131, 286, 601, 1236, 2511, 5066, 10181, 20416, 40891, 81846, 163761, 327596, 655271, 1310626, 2621341, 5242776, 10485651, 20971406, 41942921, 83885956, 167772031, 335544186, 671088501, 1342177136, 2684354411, 5368708966, 10737418081
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Crossrefs
Programs
-
Magma
[10*2^n -(5*n+9): n in [0..50]]; // G. C. Greubel, Feb 18 2022
-
Mathematica
LinearRecurrence[{4,-5,2}, {1,6,21}, 51] (* G. C. Greubel, Feb 18 2022 *)
-
PARI
a(n) = if (n<1, 1, 5*(2^n-1)+a(n-1)) for (n=0, 50, print1(a(n), ", "))
-
PARI
Vec(-(2*x^2+2*x+1)/((x-1)^2*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 26 2014
-
Sage
[5*2^(n+1) -(5*n+9) for n in (0..50)] # G. C. Greubel, Feb 18 2022
Formula
a(0) = 1, for n >= 1, a(n) = 5*A000225(n) + a(n-1).
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3). - Colin Barker, Sep 26 2014
G.f.: (1+2*x+2*x^2)/((1-x)^2*(1-2*x)). - Colin Barker, Sep 26 2014
From G. C. Greubel, Feb 18 2022: (Start)
a(n) = 10*2^n - (5*n + 9).
E.g.f.: 10*exp(2*x) - (9 + 5*x)*exp(x). (End)
Extensions
More terms from Colin Barker, Sep 26 2014
Comments