A247905 Start with a single hexagon; at n-th generation add a hexagon at each expandable vertex (this is the "vertex to side" version); a(n) is the sum of all label values at n-th generation. (See comment for construction rules.)
1, 7, 19, 43, 79, 139, 223, 355, 535, 811, 1183, 1747, 2503, 3643, 5167, 7459, 10519, 15115, 21247, 30451, 42727, 61147, 85711, 122563, 171703, 245419, 343711, 491155, 687751, 982651, 1375855, 1965667, 2752087, 3931723, 5504575, 7863859, 11009575, 15728155, 22019599, 31456771, 44039671, 62914027, 88079839, 125828563, 176160199, 251657659
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,2).
Crossrefs
Programs
-
Magma
[3*2^(n/2)*((7+5*Sqrt(2)) + (-1)^n*(7-5*Sqrt(2))) -(12*n+41): n in [0..50]]; // G. C. Greubel, Feb 17 2022
-
Mathematica
LinearRecurrence[{2,1,-4,2}, {1,7,19,43}, 50] (* G. C. Greubel, Feb 17 2022 *)
-
PARI
{ b=0; a=1; print1(1, ", "); for (n=0, 50, b=b+2^floor(n/2); a=a+6*b; print1(a, ", ") ) }
-
PARI
Vec(-(2*x^3+4*x^2+5*x+1)/((x-1)^2*(2*x^2-1)) + O(x^100)) \\ Colin Barker, Sep 26 2014
-
Sage
[3*2^(n/2)*((7+5*sqrt(2)) + (-1)^n*(7-5*sqrt(2))) -(12*n+41) for n in (0..50)] # G. C. Greubel, Feb 17 2022
Formula
a(0) = 1, for n >= 1, a(n) = 6*A027383(n) + a(n-1).
a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +2*a(n-4). - Colin Barker, Sep 26 2014
G.f.: (1+5*x+4*x^2+2*x^3)/((1-x)^2*(1-2*x^2)). - Colin Barker, Sep 26 2014
a(n) = 3*2^(n/2)*((1+sqrt(2))^3 + (-1)^n*(1-sqrt(2))^3) -12*n - 41. - G. C. Greubel, Feb 18 2022
Comments