A247968 a(n) = least k such that (k!*e^k)/(sqrt(2*Pi)*k^(k+1/2)) - 1 < 1/2^n.
1, 1, 1, 2, 3, 6, 11, 22, 43, 86, 171, 342, 683, 1366, 2731, 5462, 10923, 21846, 43691, 87382, 174763, 349526, 699051, 1398102, 2796203, 5592406, 11184811, 22369622
Offset: 1
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 18 (Stirling's formula).
Links
- Eric Weisstein's World of Mathematics, Stirling's Approximation.
Crossrefs
Cf. A005578.
Programs
-
Mathematica
z = 100; s[n_] := s[n] = (n!*E^n)/(Sqrt[2*Pi]*n^(n + 1/2)); N[Table[s[n], {n, 1, z}], 10] f[n_] := f[n] = Select[Range[6000], s[#] - 1 < 1/2^n &, 1] Flatten[Table[f[n], {n, 1, z}]] (* alternate program *) Table[k=1;Monitor[Parallelize[While[True,If[((Factorial[k]*Exp[k])/(Sqrt[2*Pi]*k^(k+(1/2))))-1<1/2^n,Break[]];k++];k],k],{n,1,10}] (* J.W.L. (Jan) Eerland, Dec 08 2022 *)
Extensions
Name corrected by David A. Corneth, Mar 06 2019
a(17)-a(28) from J.W.L. (Jan) Eerland, Jan 04 2023
Comments