cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247975 Least positive integer m such that m + n divides prime(m)^2 + prime(n)^2.

Original entry on oeis.org

1, 8, 15479, 30, 29, 68, 51, 2, 73, 15, 39, 13, 12, 36, 10, 25, 33, 8, 15, 38, 40, 108, 42, 1, 16, 39, 31, 57, 5, 4, 27, 2, 17, 51, 30, 14, 36, 20, 11, 21, 32, 23, 39, 689, 29, 4, 27, 1873, 184, 7248, 7, 153, 132, 76, 75, 18, 28, 99, 2, 86
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 28 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 0. - Zhi-Wei Sun, Sep 28 2014
If a(i) = j, then a(j) <= i. - Derek Orr, Sep 28 2014

Examples

			a(2) = 8 since 8 + 2 = 10 divides prime(8)^2 + prime(2)^2 = 19^2 + 3^2 = 370.
a(3) = 15479 since 15479 + 3 = 15482 divides prime(15479)^2 + prime(3)^2 = 169789^2 + 5^2 = 28828304546 = 15482*1862053.
a(4703) = 760027770 since 760027770 + 4703 = 760032473 divides prime(760027770)^2 + prime(4703)^2 = 17111249191^2 + 45329^2 = 292794848878552872722 = 760032473*385239919714.
		

Crossrefs

Programs

  • Mathematica
    Do[m = 1; Label[aa]; If[Mod[Prime[m]^2 + Prime[n]^2, m + n] == 0, Print[n, " ", m]; Goto[bb]]; m = m + 1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
  • PARI
    a(n)=m=1;while((prime(m)^2+prime(n)^2)%(m+n),m++);m
    vector(75,n,a(n)) \\ Derek Orr, Sep 28 2014