A247976 Triangle read by rows: T(n,k) generated by m-gon expansions in the case of odd m with "vertex to vertex" version or even m with "vertex to side" version. (See comment for details.)
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 4, 6, 4, 1, 4, 6, 4, 1, 4, 6, 4, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 35, 21, 7
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 1, 2; 1, 2, 1, 2; 1, 2, 1, 3, 3; 1, 3, 3, 1, 3, 3; 1, 3, 3, 1, 4, 6, 4; 1, 4, 6, 4, 1, 4, 6, 4; 1, 4, 6, 4, 1, 5, 10, 10, 5; 1, 5, 10, 10, 5, 1, 5, 10, 10, 5; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Kival Ngaokrajang, Illustration of initial terms
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==1, 1, If[k==n, Floor[(n+1)/2], If[OddQ[n], If[k<=(n+ 1)/2, T[n-1, k], T[n-1, k-1] + T[n-1, k]], If[k
G. C. Greubel, Feb 18 2022 *) -
Sage
@CachedFunction def T(n,k): # A247976 if (k==1): return 1 elif (k==n): return (n+1)//2 elif (n%2==1): return T(n-1,k) if (k <= (n+1)/2) else T(n-1,k-1) + T(n-1,k) else: return T(n-1,k-1)+T(n-1,k) if (k < (n+2)/2) else T(n,k-n/2) flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Feb 18 2022
Formula
T(n, k) = ( T(n-1, k) if k <= (n+1)/2 otherwise T(n-1, k-1) + T(n-1, k) ) for odd n rows, ( T(n-1, k-1) + T(n-1, k) if k < (n+2)/2 otherwise T(n, k - n/2) ) for even n rows, with T(n, 1) = 1 and T(n, n) = floor((n+1)/2). - G. C. Greubel, Feb 18 2022
Comments