cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247985 Least number k such that product{(k^2 + h)/(k^2 - h), h = 1..k} - e < 1/n.

Original entry on oeis.org

4, 7, 9, 12, 15, 17, 20, 23, 26, 28, 31, 34, 37, 39, 42, 45, 47, 50, 53, 56, 58, 61, 64, 66, 69, 72, 75, 77, 80, 83, 85, 88, 91, 94, 96, 99, 102, 104, 107, 110, 113, 115, 118, 121, 123, 126, 129, 132, 134, 137, 140, 143, 145, 148, 151, 153, 156, 159, 162
Offset: 1

Views

Author

Clark Kimberling, Sep 29 2014

Keywords

Comments

a(n+1) - a(n) is in {2,3} for n >= 1.

Examples

			Let w(n) = product{(n^2 + h)/(n^2 - h), h = 1..n} - e
Approximations are shown here:
n ... w(n)  ........ 1/n
1 ... undefined .... 1
2 ... 2.28172 .....  0.5
3 ... 1.21029 ...... 0.333333
4 ... 0.831169 ..... 0.25
5 ... 0.634485 ..... 0.2
6 ... 0.513554 ..... 0.166666
7 ... 0.431526 ..... 0.142857
a(2) = 7 because w(7) < 1/2 < w(6).
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 14.

Crossrefs

Programs

  • Mathematica
    z = 100; p[k_] := p[k] = Product[(k^2 + h)/(k^2 - h), {h, 1, k}] (* Finch p. 14 *)
    N[Table[p[n] - E, {n, 2, z}]]
    f[n_] := f[n] = Select[1 + Range[z], p[#] - E < 1/n &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]] ;  (* A247985 *)
    v = Differences[u];
    Flatten[Position[v, 2]]; (* A247986 *)
    Flatten[Position[v, 3]]; (* A247987 *)