cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A247986 Numbers k such that A247985(k+1) - A247985(k) = 2.

Original entry on oeis.org

2, 5, 9, 13, 16, 20, 23, 27, 30, 34, 37, 41, 44, 48, 52, 55, 59, 62, 66, 69, 73, 76, 80, 84, 87, 91, 94, 98, 101, 105, 108, 112, 115, 119, 123, 126, 130, 133, 137, 140, 144, 147, 151, 155, 158, 162, 165, 169, 172, 176, 179, 183, 186, 190, 194, 197, 201, 204
Offset: 1

Views

Author

Clark Kimberling, Sep 29 2014

Keywords

Comments

Complement of A247987.

Crossrefs

Programs

  • Mathematica
    z = 100; p[k_] := p[k] = Product[(k^2 + h)/(k^2 - h), {h, 1, k}] (* Finch p. 14 *)
    N[Table[p[n] - E, {n, 2, z}]]
    f[n_] := f[n] = Select[1 + Range[z], p[#] - E < 1/n &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]] ;  (* A247985 *)
    v = Differences[u];
    Flatten[Position[v, 2]]; (* A247986 *)
    Flatten[Position[v, 3]]; (* A247987 *)

A247987 Numbers k such that A247985(k+1) - A247985(k) = 3.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 28, 29, 31, 32, 33, 35, 36, 38, 39, 40, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 56, 57, 58, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92
Offset: 1

Views

Author

Clark Kimberling, Sep 29 2014

Keywords

Comments

Complement of A247986.

Crossrefs

Programs

  • Mathematica
    z = 100; p[k_] := p[k] = Product[(k^2 + h)/(k^2 - h), {h, 1, k}] (* Finch p. 14 *)
    N[Table[p[n] - E, {n, 2, z}]]
    f[n_] := f[n] = Select[1 + Range[z], p[#] - E < 1/n &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]] ;  (* A247985 *)
    v = Differences[u];
    Flatten[Position[v, 2]]; (* A247986 *)
    Flatten[Position[v, 3]]; (* A247987 *)

A247988 Least number k such that e - k/(k!)^(1/k) < 1/n.

Original entry on oeis.org

4, 11, 19, 27, 36, 45, 54, 64, 74, 84, 94, 105, 115, 126, 136, 147, 158, 169, 180, 191, 203, 214, 225, 237, 248, 260, 272, 283, 295, 307, 319, 331, 343, 355, 367, 379, 391, 403, 416, 428, 440, 452, 465, 477, 490, 502, 515, 527, 540, 552, 565, 578, 590, 603
Offset: 1

Views

Author

Clark Kimberling, Sep 29 2014

Keywords

Examples

			Let w(n) = e - n/(n!)^(1/n).  Approximations are shown here:
n .... w(n)  ...... 1/n
1 .... 1.71828 .... 1
2 .... 1.30407 .... 0.5
3 .... 1.06732 .... 0.333333
4 .... 0.911078 ... 0.25
5 .... 0.799022 ... 0.2
10 ... 0.510157 ... 0.1
11 ... 0.477609 ... 0.090909
a(2) = 11 because w(11) < 1/2 < w(10).
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 14.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity;
    z = 1000; p[k_] := p[k] = k/(k!)^(1/k) (* Finch p. 14 *)
    N[Table[E - p[n], {n, 1, z}]];
    f[n_] := f[n] = Select[Range[z], E - p[#] < 1/n &, 1];
    u = Flatten[Table[f[n], {n, 1, z/10}]]  (* A247988 *)
Showing 1-3 of 3 results.