A248012
a(n)=p1^(p2^(p3^(p4^...)))... where p1
2, 3, 2, 5, 8, 7, 2, 3, 32, 11, 8, 13, 128, 243, 2, 17, 8, 19, 32, 2187, 2048, 23, 8, 5, 8192, 3, 128, 29, 14134776518227074636666380005943348126619871175004951664972849610340958208, 31, 2, 177147, 131072, 78125, 8, 37, 524288, 1594323, 32, 41
Offset: 2
Keywords
Examples
To find a(14) we first find the distinct prime factors of 14 which are 2 and 7, which leads to a(14)=2^7=128. To find a(8) we find 8's prime factors, 8=2*2*2, the distinct prime factor is 2 therefore a(8)=2. 30 has 3 distinct prime factors {2,3,5}, so a(30)=2^(3^5)=14134776518227074636666380005943348126619871175004951664972849610340958208.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 2..65, 65 = 2*3*11-1
Crossrefs
Cf. A027748.
Programs
-
Haskell
a248012 = foldr1 (^) . a027748_row -- Reinhard Zumkeller, Sep 29 2014