cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248027 Sum over each antidiagonal of A248017.

Original entry on oeis.org

0, 0, 0, 4, 69, 554, 3100, 13288, 47492, 147050, 407568, 1030912, 2419025, 5324684, 11099416, 22065120, 42085344, 77378556, 137705904, 237996060, 400624581, 658434694, 1058839380, 1669118984, 2583424948, 3931632406, 5890783808, 8699293304, 12674960961
Offset: 1

Views

Author

Keywords

Examples

			a(1)..a(9) are formed as follows:
.             Antidiagonals of A248017                 n   a(n)
.                         0                             1      0
.                      0     0                          2      0
.                   0     0     0                       3      0
.                0     2     2     0                    4      4
.             1    14    39    14     1                 5     69
.          3    66   208   208    66     3              6    554
.      12   198   794  1092   794   198    12           7   3100
.   28   508  2196  3912  3912  2196   508    28        8  13288
.66  1092  5231 10626 13462 10626  5231  1092    66     9  47492
		

Crossrefs

Cf. A248017.

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
      (4*k^5*n^5 - 40*k^4*n^4 + 140*k^3*n^3 + 2*k^5 + 20*k^4*n
       + 30*k^3*n^2 + 30*k^2*n^3 + 20*k*n^4 + 2*n^5 - 40*k^4
       - 120*k^3*n - 185*k^2*n^2 - 120*k*n^3 - 40*n^4 + 160*k^3
       - 20*k^2*n - 20*k*n^2 + 160*n^3 - 80*k^2 + 36*k*n - 80*n^2
       + 48*k + 48*n + 45
       + (- 30*k^2*n^3 - 20*k*n^4 - 2*n^5 - 15*k^2*n^2 + 120*k*n^3
          + 40*n^4 + 20*k*n^2 - 160*n^3 + 60*k*n + 80*n^2 - 48*n
          - 45)*(-1)^k
       + (- 2*k^5 - 20*k^4*n - 30*k^3*n^2 + 40*k^4 + 120*k^3*n
          - 15*k^2*n^2 - 160*k^3 + 20*k^2*n + 80*k^2 + 60*k*n - 48*k
          - 45)*(-1)^n
       + (15*k^2*n^2 - 60*k*n + 45)*(-1)^k*(-1)^n)/1920;
    end proc;
    for j to 10000 do
      a := 0;
      for k from j by -1 to 1 do
        n := j-k+1;
        a := a+b(n, k);
      end do;
    printf("%d, ", a);
    end do;

Formula

Empirically, a(n) = (2*n^11 + 22*n^10 + 22*n^9 - 462*n^8 - 1122*n^7 + 7392*n^6 - 3509*n^5 - 25663*n^4 + 48950*n^3 - 22869*n^2 - 65133*n + 41580 - (693*n^5 + 3465*n^4 - 6930*n^3 - 45045*n^2 + 27027*n + 41580)*(-1)^n)/2661120.
Empirical g.f.: -x^4*(x^11 + 2*x^10 - 7*x^9 - 10*x^8 - 28*x^7 - 170*x^6 - 484*x^5 - 538*x^4 - 461*x^3 - 176*x^2 - 45*x - 4) / ((x - 1)^12*(x + 1)^6). - Colin Barker, Apr 21 2015

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 17 2015