A248029 Least positive integer m such that m + n divides phi(m)*sigma(n), where phi(.) and sigma(.) are given by A000010 and A000203.
1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 2, 1, 10, 9, 15, 1, 8, 1, 1, 11, 14, 1, 6, 6, 16, 5, 14, 1, 6, 1, 10, 15, 11, 13, 16, 1, 7, 9, 5, 1, 6, 1, 12, 7, 26, 1, 14, 8, 12, 21, 46, 1, 6, 17, 4, 23, 32, 1, 24, 1, 34, 41, 63, 7, 6, 1, 16, 11, 2
Offset: 2
Keywords
Examples
a(8) = 7 since 7 + 8 = 15 divides phi(7)*sigma(8) = 6*15 = 90.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..10000
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
Programs
-
Mathematica
Do[m=1;Label[aa];If[Mod[EulerPhi[m]*DivisorSigma[1,n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,2,70}]
-
PARI
a(n)=m=1;while((eulerphi(m)*sigma(n))%(m+n),m++);m vector(100,n,a(n)) \\ Derek Orr, Sep 29 2014
Comments