A248588 Least positive integer m such that m + n divides sigma(m), where sigma(m) is the sum of all positive divisors of m.
2, 12, 4, 9, 40, 6, 8, 10, 15, 14, 21, 112, 27, 22, 16, 12, 39, 289, 65, 34, 18, 20, 57, 60, 95, 46, 69, 28, 115, 96, 32, 58, 45, 62, 93, 24, 155, 340, 217, 44, 63, 30, 50, 82, 123, 52, 129, 204, 75, 40, 141, 228, 235, 42, 36, 106, 99, 68, 265, 120
Offset: 1
Keywords
Examples
a(5) = 40 since 40 + 5 = 45 divides sigma(40) = 90. a(1162) = 24031232 since 24031232 + 1162 = 24032394 divides sigma(24031232) = 48064788 = 2*24032394.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Do[m=1;Label[aa];If[Mod[DivisorSigma[1,m],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}] lpi[n_]:=Module[{m=1},While[!Divisible[DivisorSigma[1,m],m+n],m++];m]; Array[lpi,60] (* Harvey P. Dale, Feb 21 2020 *)
-
PARI
a(n) = my(m = 1); while(sigma(m) % (m+n), m++); m; \\ Michel Marcus, Aug 08 2017
Comments