A248030 Least positive integer m such that m + n divides sigma(m)*phi(n), where sigma(.) and phi(.) are given by A000203 and A000010.
2, 12, 4, 2, 3, 6, 2, 10, 3, 2, 21, 8, 3, 22, 13, 8, 9, 6, 8, 12, 3, 8, 10, 4, 5, 10, 21, 8, 20, 26, 4, 8, 7, 14, 13, 12, 8, 4, 33, 8, 23, 6, 20, 12, 3, 16, 22, 72, 7, 10, 13, 4, 27, 42, 5, 24, 15, 26, 57, 18, 11, 38, 27, 20, 31, 4, 21, 36, 19, 2
Offset: 1
Keywords
Examples
a(2) = 12 since 12 + 2 = 14 divides sigma(12)*phi(2) = 28.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Do[m=1;Label[aa];If[Mod[DivisorSigma[1,m]*EulerPhi[n],m+n]==0,Print[n," ",m];Goto[bb]];m= m+1; Goto[aa];Label[bb];Continue,{n,1,70}] lpim[n_]:=Module[{m=1,ephn=EulerPhi[n]},While[Mod[ephn*DivisorSigma[1,m],m+n]!=0, m++]; m]; Array[lpim,70] (* Harvey P. Dale, Feb 14 2024 *)
-
PARI
a(n)=m=1;while((eulerphi(n)*sigma(m))%(m+n),m++);m vector(100,n,a(n)) \\ Derek Orr, Sep 29 2014
Comments