A248035 Least positive integer m such that m + n divides phi(m)^2 + phi(n)^2, where phi(.) is Euler's totient function.
1, 3, 2, 1, 15, 14, 3, 8, 9, 30, 30, 14, 7, 6, 5, 9, 3, 8, 55, 60, 9, 4, 83, 28, 25, 71, 9, 1, 24, 4, 43, 32, 1523, 30, 13, 9, 35, 3, 21, 24, 17, 18, 7, 8, 99, 166, 5, 4, 3, 32, 205, 6, 36, 18, 19, 19, 40, 78, 9, 8
Offset: 1
Keywords
Examples
a(5) = 15 since 15 + 5 = 20 divides phi(15)^2 + phi(5)^2 = 8^2 + 4^2 = 80. a(33) = 1523 since 1523 + 33 = 1556 divides phi(1523)^2 + phi(33)^2 = 1522^2 + 20^2 = 2316884 = 1489*1556.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
Programs
-
Mathematica
Do[m=1;Label[aa];If[Mod[EulerPhi[m]^2+EulerPhi[n]^2,m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}] lpim[n_]:=Module[{m=1,p2=EulerPhi[n]^2},While[Mod[p2+EulerPhi[m]^2,m+n]!=0,m++];m]; Array[lpim,60] (* Harvey P. Dale, Nov 19 2020 *)
Comments