cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248036 Least positive integer m such that m + n divides sigma(m)^2 + sigma(n)^2, where sigma(k) denotes the number of positive divisors of k.

Original entry on oeis.org

1, 3, 2, 1, 10, 6, 3, 50, 1, 5, 34, 28, 7, 6, 10, 18, 3, 16, 33, 5, 20, 14, 83, 24, 1, 10, 10, 12, 56, 6, 33, 2, 15, 11, 93, 13, 204, 27, 52, 38, 17, 6, 7, 6, 15, 14, 5, 944, 1, 8, 17, 39, 32, 33, 5, 24, 7, 59, 58, 15
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 29 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 0.

Examples

			a(5) = 10 since 10 + 5 = 15 divides sigma(10)^2 + sigma(5)^2 = 18^2 + 6^2 = 360.
a(1024) = 2098177 since 2098177 + 1024 = 2099201 divides sigma(2098177)^2 + sigma(1024)^2 = 2103300^2 + 2047^2 = 4423875080209 = 2099201*2107409.
		

Crossrefs

Programs

  • Mathematica
    Do[m=1;Label[aa];If[Mod[DivisorSigma[1,m]^2+DivisorSigma[1,n]^2,m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
    lpi[n_]:=Module[{m=1,dsn=DivisorSigma[1,n]^2},While[ !Divisible[ DivisorSigma[ 1,m]^2+ dsn, m+n], m++];m]; Array[lpi, 60] (* Harvey P. Dale, May 07 2016 *)