A248036 Least positive integer m such that m + n divides sigma(m)^2 + sigma(n)^2, where sigma(k) denotes the number of positive divisors of k.
1, 3, 2, 1, 10, 6, 3, 50, 1, 5, 34, 28, 7, 6, 10, 18, 3, 16, 33, 5, 20, 14, 83, 24, 1, 10, 10, 12, 56, 6, 33, 2, 15, 11, 93, 13, 204, 27, 52, 38, 17, 6, 7, 6, 15, 14, 5, 944, 1, 8, 17, 39, 32, 33, 5, 24, 7, 59, 58, 15
Offset: 1
Keywords
Examples
a(5) = 10 since 10 + 5 = 15 divides sigma(10)^2 + sigma(5)^2 = 18^2 + 6^2 = 360. a(1024) = 2098177 since 2098177 + 1024 = 2099201 divides sigma(2098177)^2 + sigma(1024)^2 = 2103300^2 + 2047^2 = 4423875080209 = 2099201*2107409.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
Programs
-
Mathematica
Do[m=1;Label[aa];If[Mod[DivisorSigma[1,m]^2+DivisorSigma[1,n]^2,m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}] lpi[n_]:=Module[{m=1,dsn=DivisorSigma[1,n]^2},While[ !Divisible[ DivisorSigma[ 1,m]^2+ dsn, m+n], m++];m]; Array[lpi, 60] (* Harvey P. Dale, May 07 2016 *)
Comments