A248052 Least positive integer m such that m + n divides pi(m^2) + pi(n^2), where pi(x) denotes the number of primes not exceeding x.
1, 2, 1, 8, 7, 7, 5, 1, 25, 35, 15, 14, 13, 12, 1, 4, 23, 532, 22, 385, 113, 1, 17, 138, 8, 92, 80, 44, 116, 128, 586, 165, 5, 464, 10, 39, 80, 38, 1, 52, 33, 118, 6, 28, 11, 1239, 47, 92, 517, 3, 145, 40, 8, 184, 104, 104, 16, 73, 53, 52, 5, 145, 172, 68, 11
Offset: 1
Keywords
Examples
a(4) = 8 since 8 + 4 = 12 divides pi(8^2) + pi(4^2) = 18 + 6 = 24.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
Programs
-
Mathematica
Do[m=1;Label[aa];If[Mod[PrimePi[m^2]+PrimePi[n^2],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,70}] a[ n_] := If[ n<1, 0, Module[ {m=1}, While[ Not @ Divisible[ PrimePi[m^2] + PrimePi[n^2], m + n], m++]; m]]; (* Michael Somos, Sep 30 2014 *)
Comments