A248058 Least positive integer m such that m*n divides phi(m^2+n^2), where phi(.) is Euler's totient function.
1, 1, 2, 1, 4, 1, 8, 1, 10, 1, 726, 2, 12, 1, 4, 1, 18, 3, 20, 1, 96, 23, 22, 1, 24, 1, 72, 2, 30, 8, 30, 1, 32, 35, 34, 1, 222, 40, 26, 1, 1312, 43, 42, 46, 360, 44, 48, 2, 588, 1, 50, 2, 5100, 1, 88, 1, 19152, 60, 8, 16
Offset: 1
Keywords
Examples
a(5) = 4 since 4*5 divides phi(4^2 + 5^2) = phi(41) = 40. a(919) = 37160684 since the product 919*37160684 = 34150668596 divides phi(919^2 + 37160684^2) = phi(1380916436192417) = 1379413805929632 = 40392*34150668596.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1242
Programs
-
Mathematica
Do[m=1;Label[aa];If[Mod[EulerPhi[m^2+n^2],m*n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
-
PARI
a(n)=m=1;while(eulerphi(m^2+n^2)%(m*n),m++);m vector(100,n,a(n)) \\ Derek Orr, Oct 01 2014
Comments