cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248056 Positions of 0,0 in the Thue-Morse sequence (A010060).

Original entry on oeis.org

6, 10, 18, 24, 30, 34, 40, 46, 54, 58, 66, 72, 78, 86, 90, 96, 102, 106, 114, 120, 126, 130, 136, 142, 150, 154, 160, 166, 170, 178, 184, 190, 198, 202, 210, 216, 222, 226, 232, 238, 246, 250, 258, 264, 270, 278, 282, 288, 294, 298, 306, 312, 318, 326, 330
Offset: 1

Views

Author

Clark Kimberling, Sep 30 2014

Keywords

Comments

Every positive integer lies in exactly one of these four sequences: A248056, A091855, A091855, A248057.

Examples

			Thue-Morse sequence:  0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,..., so that a(1) = 6 and a(2) = 10.
		

Crossrefs

Programs

  • Mathematica
    z = 400; u = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 9] (* A010060 *)
    v = Rest[u]
    t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
    t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
    Flatten[Position[t1, 1]]  (* A248056 *)
    Flatten[Position[t2, 1]]  (* A091855 *)
    Flatten[Position[t3, 1]]  (* A091785 *)
    Flatten[Position[t4, 1]]  (* A248057 *)
    SequencePosition[ThueMorse[Range[400]],{0,0}][[All,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 02 2020 *)

Formula

a(n) = 2*A091785(n) for n >= 1.
a(n) = A157970(n) + 1. - Amiram Eldar, Jun 16 2025