A248060 Sums over successive antidiagonals of A248059.
0, 0, 1, 14, 89, 416, 1526, 4740, 12898, 31680, 71527, 150722, 299571, 566592, 1026524, 1791528, 3025188, 4961280, 7926621, 12370710, 18901069, 28327904, 41716466, 60451820, 86313734, 121567680, 169068835, 232386570, 315945319, 425191040, 566777976, 748786896
Offset: 1
Keywords
Examples
a(1..9) are formed as follows: . Antidiagonals of A248059 n a(n) . 0 1 0 . 0 0 2 0 . 0 1 0 3 1 . 1 6 6 1 4 14 . 3 22 39 22 3 5 89 . 9 60 139 139 60 9 6 416 . 19 135 371 476 371 135 19 7 1526 . 38 266 813 1253 1253 813 266 38 8 4740 .66 476 1574 2706 3254 2706 1574 476 66 9 12898
Links
- Christopher Hunt Gribble, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A248059.
Programs
-
Maple
b := proc (n::integer, k::integer)::integer; (4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 + 12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 + 40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 + 24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 + 24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k + (- 6*k*n + 9)*(-1)^k*(-1)^n)/384 end proc; for j to 40 do a := 0; for k from j by -1 to 1 do n := j-k+1; a := a+b(n, k); end do; printf("%d, ", a): end do:
Formula
Empirically, a(n) = (2*n^9 + 18*n^8 + 18*n^7 - 210*n^6 + 588*n^5 + 672*n^4 - 3803*n^3 - 1425*n^2 + 3195*n + 945 + 315*n^3*(-1)^n + 945*n^2*(-1)^n - 315*n*(-1)^n - 945*(-1)^n)/120960.
Empirical g.f.: x^3*(x^8-4*x^6+8*x^5+26*x^4+40*x^3+16*x^2+8*x+1) / ((x-1)^10*(x+1)^4). - Colin Barker, Apr 08 2015
Extensions
Terms corrected and extended by Christopher Hunt Gribble, Apr 06 2015