cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248060 Sums over successive antidiagonals of A248059.

Original entry on oeis.org

0, 0, 1, 14, 89, 416, 1526, 4740, 12898, 31680, 71527, 150722, 299571, 566592, 1026524, 1791528, 3025188, 4961280, 7926621, 12370710, 18901069, 28327904, 41716466, 60451820, 86313734, 121567680, 169068835, 232386570, 315945319, 425191040, 566777976, 748786896
Offset: 1

Views

Author

Keywords

Examples

			a(1..9) are formed as follows:
.             Antidiagonals of A248059                   n    a(n)
.                         0                              1       0
.                      0     0                           2       0
.                   0     1     0                        3       1
.                1     6     6     1                     4      14
.             3    22    39    22     3                  5      89
.          9    60   139   139    60     9               6     416
.      19   135   371   476   371   135    19            7    1526
.   38   266   813  1253  1253   813   266    38         8    4740
.66   476  1574  2706  3254  2706  1574   476    66      9   12898
		

Crossrefs

Cf. A248059.

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
      (4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 +
       12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 +
       40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 +
       24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 +
       24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k +
       (- 6*k*n + 9)*(-1)^k*(-1)^n)/384
    end proc;
    for j to 40 do a := 0;
      for k from j by -1 to 1 do
        n := j-k+1;
        a := a+b(n, k);
      end do;
      printf("%d, ", a):
    end do:

Formula

Empirically, a(n) = (2*n^9 + 18*n^8 + 18*n^7 - 210*n^6 + 588*n^5 + 672*n^4 - 3803*n^3 - 1425*n^2 + 3195*n + 945 + 315*n^3*(-1)^n + 945*n^2*(-1)^n - 315*n*(-1)^n - 945*(-1)^n)/120960.
Empirical g.f.: x^3*(x^8-4*x^6+8*x^5+26*x^4+40*x^3+16*x^2+8*x+1) / ((x-1)^10*(x+1)^4). - Colin Barker, Apr 08 2015

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 06 2015