cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248091 Expansion of x^3*(1-2x-x^2-x^3+x^4+x^5)/((1+x)*(1-3x+x^2-x^3+3x^4)).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 3, 6, 16, 39, 101, 259, 670, 1732, 4485, 11613, 30079, 77910, 201812, 522763, 1354153, 3507775, 9086502, 23537592, 60971593, 157940361, 409127579, 1059801190, 2745301576, 7111410031, 18421346973
Offset: 0

Views

Author

Emeric Deutsch, Oct 28 2014

Keywords

Comments

a(n) = number of nonisomorphic n-element posets P such that if 1<=i<=n-1, then P has exactly 3 order ideals of cardinality i.

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 2nd ed., 2012, Exercise 3.35c, p. 359.

Programs

  • Maple
    g := x^3*(x^5+x^4-x^3-x^2-2*x+1)/((x+1)*(3*x^4-x^3+x^2-3*x+1)): gser := series(g, x = 0, 45): seq(coeff(gser, x, n), n = 0 .. 40);
  • Mathematica
    CoefficientList[Series[x^3*(1 - 2 x - x^2 - x^3 + x^4 + x^5)/((1 + x) (1 - 3 x + x^2 - x^3 + 3 x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 28 2014 *)