A248107 Number of isomorphism classes of affine Mendelsohn triple systems of order n.
1, 0, 1, 1, 0, 0, 2, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 5, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 4, 3, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 5, 0, 0, 2, 0
Offset: 1
Links
- David Stanovsky, Table of n, a(n) for n = 1..1023
- Diane M. Donovan, Terry S. Griggs, Thomas A. McCourt, Jakub Opršal, David Stanovský, Distributive and anti-distributive Mendelsohn triple systems, arXiv:1411.5194 [math.CO], 2014. [Published in Canad. Math. Bull. Vol. 59 (1), 2016 pp. 36-49.] See a(n) on page 9 of arXiv version.
- Přemysl Jedlička, David Stanovský, and Petr Vojtěchovský, Trimedial and distributive quasigroups of order 243, arXiv:1603.00608 [math.GR], 2016.
- Přemysl Jedlička, David Stanovský, and Petr Vojtěchovský, Trimedial and distributive quasigroups of order 243, Discrete Math. 340/3 (2017), 404--415.
Programs
-
GAP
# For brevity, I do not exploit multiplicativity of a(n) here. a := function(n) local count, gg, g, autg, conj, f, b, x; count := 0; for gg in AllGroups(Size, n, IsAbelian, true) do g := Image(IsomorphismPermGroup(gg), gg); autg := AutomorphismGroup(g); conj := List(ConjugacyClasses(autg), x->Representative(x)); for f in conj do b := true; for x in g do if not Image(f, Image(f, x))*Image(f, x^-1)*x = () then b := false; break; fi; od; if b then count := count + 1; fi; od; od; return count; end;
Comments