A248112 Number T(n,k) of subsets of {1,...,n} containing n and having at least one set partition into k blocks with equal element sum; triangle T(n,k), n>=1, 1<=k<=floor((n+1)/2), read by rows.
1, 2, 4, 1, 8, 2, 16, 4, 1, 32, 10, 2, 64, 20, 5, 1, 128, 44, 12, 2, 256, 93, 29, 6, 1, 512, 198, 63, 14, 2, 1024, 414, 146, 37, 7, 1, 2048, 864, 329, 88, 16, 2, 4096, 1788, 722, 218, 49, 8, 1, 8192, 3687, 1613, 515, 118, 19, 2, 16384, 7541, 3505, 1226, 313, 62, 9, 1
Offset: 1
Examples
T(7,3) = 5: {2,3,4,5,7}-> 25/34/7, {1,3,4,6,7}-> 16/34/7, {1,2,5,6,7}-> 16/25/7, {1,2,3,5,6,7}-> 17/26/35, {2,3,4,5,6,7}-> 27/36/45. T(8,4) = 2: {1,2,3,5,6,7,8}-> 17/26/35/8, {1,2,3,4,5,6,7,8}-> 18/27/36/45. T(9,5) = 1: {1,2,3,5,6,7,8,9}-> 18/27/36/45/9. Triangle T(n,k) begins: 01 : 1; 02 : 2; 03 : 4, 1; 04 : 8, 2; 05 : 16, 4, 1; 06 : 32, 10, 2; 07 : 64, 20, 5, 1; 08 : 128, 44, 12, 2; 09 : 256, 93, 29, 6, 1; 10 : 512, 198, 63, 14, 2; 11 : 1024, 414, 146, 37, 7, 1; 12 : 2048, 864, 329, 88, 16, 2;
Links
- Alois P. Heinz, Rows n = 0..24, flattened
Crossrefs
Programs
-
Maple
b:= proc(l, i) option remember; local k, r, j; k, r:= nops(l), {}; if i*(i+1)/2 < l[-1]*k-add(j, j=l) then r elif i=0 then {r} else for j to k do r:= r union map(y->y union {i}, b((p-> map(x->x-p[1], p))(sort(subsop(j=l[j]+i, l))), i-1)) od; r union b(l, i-1) fi end: A:= (n, k)-> `if`(k=1, 2^(n-1), nops(b([0$(k-1), n], n-1))): seq(seq(A(n, k), k=1..iquo(n+1, 2)), n=1..15);
-
Mathematica
b[l_, i_] := b[l, i] = Module[{k, r, j}, {k, r} = {Length[l], {}}; Which[ i*(i+1)/2 < l[[-1]]*k - Total[l], r, i == 0, {r}, True, For[j = 1, j <= k, j++, r = r ~Union~ Map[# ~Union~ {i}&, b[Function[p, Map[#-p[[1]]&, p] ][Sort[ReplacePart[l, j -> l[[j]]+i]]], i-1]]]; r ~Union~ b[l, i-1]]]; A[n_, k_] := If[k==1, 2^(n-1), Length[b[Append[Array[0&, (k-1)], n], n-1] ]]; Table[A[n, k], {n, 1, 15}, {k, 1, Quotient[n+1, 2]}] // Flatten (* Jean-François Alcover, Feb 03 2017, Translated from Maple *)