A248156 Inverse Riordan triangle of A106513: Riordan ((1 - 2*x^2 )/(1 + x), x/(1+x)).
1, -2, 1, 1, -3, 1, 0, 4, -4, 1, -1, -4, 8, -5, 1, 2, 3, -12, 13, -6, 1, -3, -1, 15, -25, 19, -7, 1, 4, -2, -16, 40, -44, 26, -8, 1, -5, 6, 14, -56, 84, -70, 34, -9, 1, 6, -11, -8, 70, -140, 154, -104, 43, -10, 1, -7, 17, -3, -78, 210, -294, 258, -147, 53, -11, 1, 8, -24, 20, 75, -288, 504, -552, 405, -200, 64, -12, 1
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 0: 1 1: -2 1 2: 1 -3 1 3: 0 4 -4 1 4: -1 -4 8 -5 1 5: 2 3 -12 13 -6 1 6: -3 -1 15 -25 19 -7 1 7: 4 -2 -16 40 -44 26 -8 1 8: -5 6 14 -56 84 -70 34 -9 1 9: 6 -11 -8 70 -140 154 -104 43 -10 1 ... For more rows see the link. Recurrence from A-sequence: T(5,2) = T(4,1) - T(4,2) = -4 - 8 = -12. Recurrence from the Z-sequence: T(5,0) = -(2*(-1) + 3*(-4) + 7*8 + 17*(-5) + 41*1) = 2. Standard recurrence for T(n,0): T(3,0) = -2*T(2,0) - T(1,0) = -2*1 - (-2) = 0.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Wolfdieter Lang, First 13 rows of the triangle
Crossrefs
Programs
-
Magma
function T(n,k) // T = A248156 if k eq n then return 1; elif k eq 0 then return (-1)^n*(3-n); else return T(n-1,k-1) - T(n-1,k); end if; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2025
-
Mathematica
T[n_, k_] := SeriesCoefficient[x^k*(1 - 2*x^2)/(1 + x)^(k + 2), {x, 0, n}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 09 2014 *) T[n_, k_]:= T[n, k]= If[k==n,1, If[k==0,(-1)^n*(3-n), T[n-1,k-1]-T[n-1,k]]]; Table[T[n,k], {n,0,25}, {k,0,n}]//Flatten (* G. C. Greubel, May 27 2025 *)
-
SageMath
def T(n,k): # T = A248156 if (k==n): return 1 elif (k==0): return (-1)^n*(3-n) else: return T(n-1,k-1) - T(n-1,k) print(flatten([[T(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, May 27 2025
Formula
O.g.f. row polynomials R(n,x) = Sum_{k=0..n} T(n,k)*x^k = [(-z)^n] (1 - 2*z^2)/( (1 + z)*(1 + (1-x)*z)).
O.g.f. column m: x^m*(1 - 2*x^2)/(1 + x)^(m+2), m >= 0.
The A-sequence is [1, -1], implying the recurrence T(n,k) = T(n-1, k-1) - T(n-1, k), n >= k > = 1.
The Z-sequence is -[2, 3, 7, 17, 41, 99, 239, 577, 1393, ...] = A248161, implying the recurrence T(n, 0) = Sum_{k=0..n-1} T(n-1,k)*Z(k). See the W. Lang link under A006232 for Riordan A- and Z-sequences.
The standard recurrence for the sequence for column k=0 is T(0,0) = 1 and T(n,0) = -2*T(n-1,0) - T(n-2,0), n >= 3, with T(1,0) = -2 and T(2,0) = 1.
From G. C. Greubel, May 27 2025: (Start)
Sum_{k=0..n} T(n, k) = (-1)^(n+1) + 2*([n=0] - [n=1]).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = the repeated pattern of [1, -2, 0, 3, -4, 2]. (End)
Comments