cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248169 G.f.: AGM( (1-x)/(1+x), (1+3*x)/(1-3*x) ).

Original entry on oeis.org

1, 2, 6, 18, 46, 146, 398, 1234, 3454, 10610, 30230, 92290, 265670, 808210, 2343182, 7110994, 20720798, 62774578, 183617910, 555559554, 1629845726, 4926370114, 14486707710, 43752525762, 128909169334, 389075915954, 1148184115062, 3463595977986, 10235096852902
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2014

Keywords

Comments

Here AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
a(n) == 2 (mod 4) for n>0.
Limit a(n+1)/a(n) = 3.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 18*x^3 + 46*x^4 + 146*x^5 + 398*x^6 +...
		

Crossrefs

Cf. A063887.

Programs

  • Mathematica
    CoefficientList[Series[Pi*(1 + 3*x)/((2*(1 - 3*x)*EllipticK[(16*x*(1 + 3*x^2)) / ((1 + x)^2*(1 + 3*x)^2)])), {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 26 2019 *)
  • PARI
    {a(n)=local(A,X=x+x*O(x^n));A=agm((1-x)/(1+X),(1+3*x)/(1-3*X)); polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

a(n) ~ Pi * 3^n / log(n) * (1 - (gamma + 4*log(2))/log(n) + (gamma^2 + 8*log(2)*gamma + 16*log(2)^2 - Pi^2/6) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 30 2019