A248181 Decimal expansion of Sum_{h >= 0} 1/binomial(h, floor(h/2)).
3, 2, 0, 9, 1, 9, 9, 5, 7, 6, 1, 5, 6, 1, 4, 5, 2, 3, 3, 7, 2, 9, 3, 8, 5, 5, 0, 5, 0, 9, 4, 7, 7, 0, 4, 8, 8, 1, 8, 9, 3, 7, 7, 4, 9, 8, 7, 2, 8, 4, 9, 3, 7, 1, 7, 0, 4, 6, 5, 8, 9, 9, 5, 6, 9, 2, 5, 4, 1, 5, 4, 5, 4, 0, 8, 4, 2, 3, 5, 9, 2, 2, 4, 5, 6, 0
Offset: 0
Examples
3.20919957615614523372938550509477048818... Equals 1 + 1 + 1/2 + 1/3 + 1/6 + 1/10 + 1/20 + 1/35 + 1/70 + 1/126 + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A248182.
Programs
-
Mathematica
r = N[Sum[1/Binomial[h, Floor[h/2]], {h, 0, 2000}], 200]; u = RealDigits[N[r, 200]][[1]] (* or *) Sum[1/Binomial[h, h/2], {h, 0, Infinity, 2}] + Sum[1/Binomial[h, (h-1)/2], {h, 1, Infinity, 2}] // Simplify // Expand (* Vaclav Kotesovec, Jul 01 2024 *)
Formula
Equals 2 + 2*Pi/3^(3/2). - Vaclav Kotesovec, Jul 01 2024
Comments