A248210 Zeroless numbers k (numbers in A052382) such that k - DigitProduct(k) contains the same distinct digits as k.
293, 362, 436, 545, 554, 631, 653, 749, 763, 891, 958, 965, 1293, 1362, 1436, 1545, 1554, 1631, 1653, 1749, 1763, 1891, 1958, 1965, 2193, 2331, 2491, 2536, 2556, 2565, 2693, 2917, 2954, 2963, 3162, 3231, 3325, 3382, 3529, 3534, 3635, 3651, 4291, 4515, 4533, 4551, 4634, 4935, 4952, 4971
Offset: 1
Examples
631 - 6*3*1 = 613 contains the same digits as 631. So 631 is a term of this sequence.
Crossrefs
Programs
-
Mathematica
Select[Range@5000,(d=IntegerDigits@#;FreeQ[d,0]&&Union@IntegerDigits[#-Times@@d]==Union@d)&] (* Giorgos Kalogeropoulos, Jul 20 2021 *)
-
PARI
for(n=1, 10^4, d=digits(n); p=prod(i=1, #d, d[i]); if(p && vecsort(digits(n), , 8)==vecsort(digits(n-p), , 8), print1(n, ", ")))
-
Python
from math import prod def ok(n): s = str(n) return '0' not in s and set(str(n-prod(int(d) for d in s))) == set(s) print(list(filter(ok, range(5000)))) # Michael S. Branicky, Jul 18 2021
Comments