A248229 Numbers k such that A248227(k+1) = A248227(k) + 1.
2, 3, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 33, 35, 36, 38, 39, 41, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 95
Offset: 1
Examples
The difference sequence of A248227 is (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...), so that A248228 = (1, 4, 8, 11, 14, 17, 2,...) and A248229 = (2, 3, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18,...), the complement of A248228.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; z = 400; p[k_] := p[k] = Sum[1/h^4, {h, 1, k}]; N[Table[Zeta[4] - p[n], {n, 1, z/10}]] f[n_] := f[n] = Select[Range[z], Zeta[4] - p[#] < 1/n^3 &, 1]; u = Flatten[Table[f[n], {n, 1, z}]] (* A248227 *) Flatten[Position[Differences[u], 0]] (* A248228 *) Flatten[Position[Differences[u], 1]] (* A248229 *) f = Table[Floor[1/(Zeta[4] - p[n])], {n, 1, z}] (* A248230 *)
Comments