cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A248669 Triangular array of coefficients of polynomials q(n,k) defined in Comments.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 16, 17, 7, 1, 65, 84, 45, 11, 1, 326, 485, 309, 100, 16, 1, 1957, 3236, 2339, 909, 196, 22, 1, 13700, 24609, 19609, 8702, 2281, 350, 29, 1, 109601, 210572, 181481, 89225, 26950, 5081, 582, 37, 1, 986410, 2004749, 1843901, 984506, 331775
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

q(n,x) = 1 + k+x + (k+x)(k-1+x) + (k+x)(k-1+x)(k-2+x) + ... + (k+x)(k-1+x)(k-2+x)...(1+x). The arrays at A248229 and A248664 have the same first column, given by A000522(n) for n >= 0. The alternating row sums of the array at A248669 are also given by A000522; viz., q(n,-1) = q(n-1,0) = A000522(n-2) for n >= 2. Column 2 of A248669 is given by A093344(n) for n >= 1.

Examples

			The first six polynomials:
p(1,x) = 1
p(2,x) = 2 + x
p(3,x) = 5 + 4 x + x^2
p(4,x) = 16 + 17 x + 7 x^2 + x^3
p(5,x) = 65 + 8 x + 45 x^2 + 11 x^3 + x^4
p(6,x) = 326 + 485 x + 309 x^2 + 100 x^3 + 16 x^4 + x^5
First six rows of the triangle:
1
2     1
5     4     1
16    17    7    1
65    84    45   11    1
326   485  309   100   16   1
		

Crossrefs

Programs

  • Mathematica
    t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}];
    q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
    TableForm[Table[q[x, n], {n, 1, 6}]];
    TableForm[Table[Factor[q[x, n]], {n, 1, 6}]];
    c[n_] := c[n] = CoefficientList[q[x, n], x];
    TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *)
    Flatten[Table[c[n], {n, 1, 12}]]   (* A248669 sequence *)

Formula

q(n,x) = (x + n - 1)*q(n-1,x) + 1, with q(1,x) = 1.

A248227 Least k such that zeta(4) - sum{1/h^4, h = 1..k} < 1/n^3.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 39, 40, 40, 41, 42, 42, 43, 44, 44, 45, 46, 46, 47
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2014

Keywords

Comments

This sequence and A248230 provide insight into the manner of convergence of sum{1/h^4, h = 0..k}. Since a(n+1) - a(n) is in {0,1} for n >= 1, A248228 and A248229 are complementary.

Examples

			Let s(n) = sum{1/h^4, h = 1..n}.  Approximations are shown here:
n ... zeta(4) - s(n) ... 1/n^3
1 ... 0.0823232 .... 1
2 ... 0.0198232 .... 0.125
3 ... 0.0074775 .... 0.037
4 ... 0.0035713 .... 0.015
5 ... 0.0019713 .... 0.008
6 ... 0.0011997 .... 0.005
a(6) = 4 because zeta(4) - s(4) < 1/216 < zeta(4) - s(3).
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; z = 400; p[k_] := p[k] = Sum[1/h^4, {h, 1, k}];
    N[Table[Zeta[4] - p[n], {n, 1, z/10}]]
    f[n_] := f[n] = Select[Range[z], Zeta[4] - p[#] < 1/n^3 &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]   (* A248227 *)
    Flatten[Position[Differences[u], 0]]  (* A248228 *)
    Flatten[Position[Differences[u], 1]]  (* A248229 *)
    f = Table[Floor[1/(Zeta[4] - p[n])], {n, 1, z}]  (* A248230 *)

Formula

a(n) ~ 3^(-1/3) * n. - Vaclav Kotesovec, Oct 09 2014

A248228 Numbers k such that A248227(k+1) = A248227(k).

Original entry on oeis.org

1, 4, 8, 11, 14, 17, 21, 24, 27, 30, 34, 37, 40, 44, 47, 50, 53, 57, 60, 63, 66, 70, 73, 76, 79, 83, 86, 89, 92, 96, 99, 102, 105, 109, 112, 115, 119, 122, 125, 128, 132, 135, 138, 141, 145, 148, 151, 154, 158, 161, 164, 167, 171, 174, 177, 180, 184, 187
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2014

Keywords

Comments

Since A248227(k+1) - A248227(k) is in {0,1} for k >= 1, A248228 and A248229 are complementary.

Examples

			The difference sequence of A248227 is (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...), so that A248228 = (1, 4, 8, 11, 14, 17, 2,...) and A248229 = (2, 3, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18,...), the complement of A248228.
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; z = 400; p[k_] := p[k] = Sum[1/h^4, {h, 1, k}];
    N[Table[Zeta[4] - p[n], {n, 1, z/10}]]
    f[n_] := f[n] = Select[Range[z], Zeta[4] - p[#] < 1/n^3 &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]   (* A248227 *)
    Flatten[Position[Differences[u], 0]]  (* A248228 *)
    Flatten[Position[Differences[u], 1]]  (* A248229 *)
    f = Table[Floor[1/(Zeta[4] - p[n])], {n, 1, z}]  (* A248230 *)

A248230 a(n) = floor(1/(zeta(4) - Sum_{h=1..n} 1/h^4)).

Original entry on oeis.org

12, 50, 133, 280, 507, 833, 1276, 1855, 2586, 3488, 4579, 5878, 7401, 9167, 11194, 13501, 16104, 19022, 22273, 25876, 29847, 34205, 38968, 44155, 49782, 55868, 62431, 69490, 77061, 85163, 93814, 103033, 112836, 123242, 134269, 145936, 158259, 171257, 184948
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2014

Keywords

Comments

This sequence provides insight into the manner of convergence of Sum_{h=1..n} 1/h^4.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; z = 400; p[k_] := p[k] = Sum[1/h^4, {h, 1, k}];
    N[Table[Zeta[4] - p[n], {n, 1, z/10}]]
    f[n_] := f[n] = Select[Range[z], Zeta[4] - p[#] < 1/n^3 &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]   (* A248227 *)
    Flatten[Position[Differences[u], 0]]  (* A248228 *)
    Flatten[Position[Differences[u], 1]]  (* A248229 *)
    f = Table[Floor[1/(Zeta[4] - p[n])], {n, 1, z}]  (* A248230 *)

Formula

Empirically, a(n) = 3*a(n-1) - a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7).
Conjecture: a(n) = 1 + 7*n/2 + 9*n^2/2 + 3*n^3 + floor(n/4), holds for all n <= 10000. - Vaclav Kotesovec, Oct 09 2014
Showing 1-4 of 4 results.