A248232 Numbers k such that A248231(k+1) = A248231(k).
1, 4, 8, 11, 15, 18, 22, 25, 28, 32, 35, 39, 42, 46, 49, 52, 56, 59, 63, 66, 69, 73, 76, 80, 83, 87, 90, 93, 97, 100, 104, 107, 110, 114, 117, 121, 124, 128, 131, 134, 138, 141, 145, 148, 151, 155, 158, 162, 165, 168, 172, 175, 179, 182, 186, 189, 192, 196
Offset: 1
Examples
The difference sequence of A248231 is (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, ...), so that A248232 = (1, 4, 8, 11, 15, 18, 22, 25, 28,...) and A248233 = (2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17,...), the complement of A248232.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
z = 400; p[k_] := p[k] = Sum[1/h^5, {h, 1, k}]; N[Table[Zeta[5] - p[n], {n, 1, z/10}]] f[n_] := f[n] = Select[Range[z], Zeta[5] - p[#] < 1/n^4 &, 1] u = Flatten[Table[f[n], {n, 1, z}]] (* A248231 *) Flatten[Position[Differences[u], 0]] (* A248232 *) Flatten[Position[Differences[u], 1]] (* A248233 *) Table[Floor[1/(Zeta[5] - p[n])], {n, 1, z}] (* A248234 *)
Comments