A248233 Numbers k such that A248231(k+1) = A248231(k) + 1.
2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 53, 54, 55, 57, 58, 60, 61, 62, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94
Offset: 1
Examples
The difference sequence of A248231 is (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, ...), so that A248232 = (1, 4, 8, 11, 15, 18, 22, 25, 28,...) and A248233 = (2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17,...), the complement of A248232.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 400; p[k_] := p[k] = Sum[1/h^5, {h, 1, k}]; N[Table[Zeta[5] - p[n], {n, 1, z/10}]] f[n_] := f[n] = Select[Range[z], Zeta[5] - p[#] < 1/n^4 &, 1] u = Flatten[Table[f[n], {n, 1, z}]] (* A248231 *) Flatten[Position[Differences[u], 0]] (* A248232 *) Flatten[Position[Differences[u], 1]] (* A248233 *) Table[Floor[1/(Zeta[5] - p[n])], {n, 1, z}] (* A248234 *)
Comments