cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248358 Floor(1/(Pi - n*sin(Pi/n))).

Original entry on oeis.org

0, 0, 1, 3, 4, 7, 9, 12, 15, 19, 23, 27, 32, 38, 43, 49, 56, 62, 69, 77, 85, 93, 102, 111, 121, 130, 141, 151, 162, 174, 186, 198, 210, 223, 237, 250, 265, 279, 294, 309, 325, 341, 357, 374, 391, 409, 427, 445, 464, 483, 503, 523, 543, 564, 585, 606, 628
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2014

Keywords

Comments

For n > 1, let arch(n) = n*sin(Pi/n) be the Archimedean approximation to Pi (Finch, pp. 17 and 23) given by a regular polygon of n+1 sides. A248358 and A248355 provide insight into the manner of convergence of arch(n) to Pi. (For the closely related function Arch, see A248347.)
See A248578 for the similar sequence round(1/(Pi-n*sin(Pi/n))). - M. F. Hasler, Oct 08 2014

Examples

			n    Pi - arch(n)    1/(Pi - arch(n))
1     3.14159...       0.3183...
2     1.14159...       0.8759...
3     0.54351...       1.8398...
4     0.31316...       3.1932...
5     0.20266...       4.9342...
6     0.14159...       7.0625...
		

Crossrefs

Programs

  • Mathematica
    z = 200; p[k_] := p[k] = k*Sin[Pi/k]; N[Table[Pi - p[n], {n, 1, z/10}]]
    f[n_] := f[n] = Select[Range[z], Pi - p[#] < 1/(2 n) &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]        (* A248355 *)
    v = Flatten[Position[Differences[u], 0]]   (* A248356 *)
    w = Flatten[Position[Differences[u], 1]]   (* A248357 *)
    f = Table[Floor[1/(Pi - p[n])], {n, 1, z}] (* A248358 *)
  • PARI
    a(n)=1\(Pi-n*sin(Pi/n)) \\ M. F. Hasler, Oct 08 2014

Formula

a(n) ~ 6*n^2/Pi^3. - Vaclav Kotesovec, Oct 09 2014