cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248630 Numbers k such that A248630(k+1) = A248360(k) + 1.

Original entry on oeis.org

7, 11, 15, 18, 22, 25, 28, 31, 34, 37, 39, 42, 45, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 75, 77, 80, 82, 85, 88, 90, 93, 95, 98, 101, 103, 106, 108, 111, 113, 116, 118, 121, 124, 126, 129, 131, 134, 136, 139, 141, 144, 146, 149, 151, 154, 156, 159, 161
Offset: 1

Views

Author

Clark Kimberling, Oct 10 2014

Keywords

Examples

			(A248630(k+1) = A248360(k)) = (2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, ...), so that A248630 = (7, 11, 15, 18, ...).
		

Crossrefs

Programs

  • Mathematica
    z = 300; p[k_] := p[k] = Sum[(h^2/2^h), {h, 1, k}]
    d = N[Table[6 - p[k], {k, 1, z/5}], 12]
    f[n_] := f[n] = Select[Range[z], 6 - p[#] < 1/3^n &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248629 *)
    d = Differences[u]
    v = Flatten[Position[d, 1]]  (* A248630 *)

A248347 a(n) = floor(1/(Pi - 2^(n+1)*sin(Pi/2^(n+1)))).

Original entry on oeis.org

3, 12, 49, 198, 792, 3170, 12681, 50727, 202909, 811636, 3246545, 12986183, 51944732, 207778928, 831115713, 3324462855, 13297851421, 53191405684, 212765622737, 851062490950, 3404249963800, 13616999855201, 54467999420806, 217871997683226, 871487990732903
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2014

Keywords

Comments

Let Arch(n) = 2^(n+1)*sin(Pi/2^(n+1)) be the Archimedean approximation to Pi (Finch, pp. 17 and 23) given by a regular polygon of 2^(n+1) sides. A248347 provides insight into the manner of convergence of Arch(n) to Pi. Another provider is the fact that the least k for which Arch(k) < 1/4^n is A000027(n) = n. (For the closely related function arch, see A248355.)

Examples

			n    Pi - Arch(n)      1/(Pi - Arch(n))
1    0.313166...         3.1932...
2    0.0801252...       12.4805...
3    0.0201475...       49.6339...
4    0.00504416...     198.249...
5    0.0012615...      792.709...
		

Crossrefs

Programs

  • Mathematica
    z = 200; p[k_] := p[k] = (2^(k + 1))*Sin[Pi/2^(k + 1)]
    Table[Floor[1/(Pi - p[n])], {n, 1, z}]  (* A248347  *)

Formula

a(n) ~ 6 * 4^(n+1) / Pi^3. - Vaclav Kotesovec, Oct 09 2014

A248359 Least number k such that cos(Pi/k) + 1/(k*n) > 1.

Original entry on oeis.org

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 79, 84, 89, 94, 99, 104, 109, 114, 119, 124, 129, 134, 139, 144, 149, 153, 158, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 213, 218, 223, 227, 232, 237, 242, 247, 252, 257, 262, 267, 272, 277
Offset: 1

Views

Author

Clark Kimberling, Oct 07 2014

Keywords

Comments

It appears that a(n+1) - a(n) is in {4,5} for n >= 1.
Lim_{n->infinity} a(n)/n = Pi^2/2 = 4.9348022..., but lim_{n->infinity} (a(n+1) - a(n)) does not exist; Pi^2/2 is only a mean value of these differences. - Vaclav Kotesovec, Oct 09 2014

Examples

			Taking n = 2, we have cos(Pi/9) + 1/(18) = 0.99524... < 1 < 1.0010565... = cos(Pi/10) + 1/(20), so that a(2) = 10, as corroborated for n = 2 in the following list of approximations:
n ... cos(Pi/a(n)) + 1/(n*a(n))
1 ... 1.009016994
2 ... 1.001056516
3 ... 1.000369823
4 ... 1.000188341
5 ... 1.000114701
6 ... 1.000077451
		

Crossrefs

Programs

  • Mathematica
    z = 800; f[n_] := f[n] = Select[Range[z], Cos[Pi/#] + 1/(#*n) > 1 &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248359 *)
    Table[Floor[1/(1 - Cos[Pi/n])], {n, 1, z/10}]  (* A248360 *)
    Table[k=1; While[Cos[Pi/k]+1/(k*n)<=1,k++]; k,{n,1,100}] (* Vaclav Kotesovec, Oct 09 2014 *)

Formula

a(n) ~ n*Pi^2/2 = n*A102753. - Vaclav Kotesovec, Oct 09 2014
Showing 1-3 of 3 results.