cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A248632 Numbers k such that A248631(k+1) = A248631(k).

Original entry on oeis.org

6, 10, 14, 17, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 77, 80, 83, 86, 89, 92, 95, 97, 100, 103, 106, 109, 111, 114, 117, 120, 123, 126, 128, 131, 134, 137, 140, 142, 145, 148, 151, 154, 156, 159, 162, 165, 168, 170, 173
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Examples

			(A248631(k+1) = A248631(k)) = (1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1,... ), so that A248632 = (6, 10, 14, ... ).
		

Crossrefs

Programs

  • Mathematica
    z = 200; p[k_] := p[k] = Sum[(h^2/2^h), {h, 1, k}];
    d = N[Table[6 - p[k], {k, 1, z/5}], 12];
    f[n_] := f[n] = Select[Range[z], 6 - p[#] < 1/3^n &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]; (* A248629 *)
    d = Differences[u];
    Flatten[Position[d, 1]];  (* A248630 *)

A248629 Least k such that 6 - sum{(h^2)/2^h, h = 1..k} < 1/3^n.

Original entry on oeis.org

9, 11, 13, 15, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 72, 73, 75, 76, 78, 80, 81, 83, 85, 86, 88, 90, 91, 93, 95, 96, 98, 99, 101, 103, 104, 106, 108, 109, 111, 112, 114
Offset: 1

Views

Author

Clark Kimberling, Oct 10 2014

Keywords

Comments

This sequence provides insight into the manner of convergence of sum{(h^2)/2^h, h = 1..k} to 6.

Examples

			Let s(n) = 6 - sum{(h^2)/2^h, h = 1..n}.  Approximations follow:
n ... s(n) ........ 1/3^n
1 ... 5.50000 ... 0.333333
2 ... 4.50000 ... 0.111111
3 ... 3.37500 ... 0.037037
4 ... 2.37500 ... 0.012345
5 ... 1.59375 ... 0.004115
6 ... 1.03125 ... 0.001371
7 ... 0.64843 ... 0.000457
8 ... 0.39843 ... 0.000152
9 ... 0.24023 ... 0.000050
10 .. 0.14257 ... 0.000018
11 .. 0.08349 ... 0.000006
a(2) = 11 because s(11) < 1/9 < s(10).
		

Crossrefs

Programs

  • Mathematica
    z = 300; p[k_] := p[k] = Sum[(h^2/2^h), {h, 1, k}]
    d = N[Table[6 - p[k], {k, 1, z/5}], 12]
    f[n_] := f[n] = Select[Range[z], 6 - p[#] < 1/3^n &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248629 *)
    d = Differences[u]
    v = Flatten[Position[d, 1]]  (* A248630 *)

A248635 Numbers k such that A248633(k+1) = A248633(k) + 2.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 41, 43, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 100, 102, 104, 106, 108, 110, 112, 114, 116
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Examples

			(A248633(k+1) = A248633(k)) = (2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1,... ), so that A248634 = (5, 8, 11, 13, ... ) and A248635 = (1, 2, 3, 4, 6, 7, 9, 10, 12, ...).
		

Crossrefs

Programs

  • Mathematica
    z= 300; p[k_] := p[k] = Sum[(h^2/4^h), {h, 1, k}];
    d = N[Table[20/27 - p[k], {k, 1, z/5}], 12];
    f[n_] := f[n] = Select[Range[z], 20/27 - p[#] < 1/8^n &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248633 *)
    d = Differences[u]
    Flatten[Position[d, 1]]  (* A248634 *)
    Flatten[Position[d, 2]]  (* A248635 *)

A248631 Least k such that 3/2 - sum{(h^2)/3^h, h = 1..k} < 1/2^n.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 47, 47, 48, 49, 49
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

This sequence provides insight into the manner of convergence of sum{(h^2)/3^h, h = 1..k} to 3/2.

Examples

			Let s(n) = 3/2 - sum{(h^2)/3^h, h = 1..n}.  Approximations follow:
n ... s(n) ...... 1/2^n
1 ... 1.16666 ... 0.500000
2 ... 0.72222 ... 0.250000
3 ... 0.38888 ... 0.125000
4 ... 0.03909 ... 0.062500
5 ... 0.08847 ... 0.031250
6 ... 0.03909 ... 0.015625
7 ... 0.01668 ... 0.007812
a(5) = 7 because s(7) < 1/32 < s(6).
		

Crossrefs

Programs

  • Mathematica
    z = 200; p[k_] := p[k] = Sum[(h^2/2^h), {h, 1, k}];
    d = N[Table[6 - p[k], {k, 1, z/5}], 12];
    f[n_] := f[n] = Select[Range[z], 6 - p[#] < 1/3^n &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]; (* A248629 *)
    d = Differences[u];
    Flatten[Position[d, 1]];  (* A248630 *)

A248633 Least k such that 20/27- sum{(h^2)/4^h, h = 1..k} < 1/8^n.

Original entry on oeis.org

3, 5, 7, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

This sequence provides insight into the manner of convergence of sum{(h^2)/4^h, h = 1..k} to 20/27. The difference sequence of A248633 entirely of 1s and 2s, so that A248634 and A248635 partition the positive integers.

Examples

			Let s(n) = 20/27 - sum{(h^2)/4^h, h = 1..n}.  Approximations follow:
n ... s(n) ........ 1/8^n
1 ... 0.49074 ... 0.125000
2 ... 0.24074 ... 0.015625
3 ... 0.10011 ... 0.001953
4 ... 0.03761 ... 0.000244
5 ... 0.01320 ... 0.000030
a(2) = 5 because s(5) < 1/8^2 < s(2).
		

Crossrefs

Programs

  • Mathematica
    z= 300; p[k_] := p[k] = Sum[(h^2/4^h), {h, 1, k}];
    d = N[Table[20/27 - p[k], {k, 1, z/5}], 12];
    f[n_] := f[n] = Select[Range[z], 20/27 - p[#] < 1/8^n &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248633 *)
    d = Differences[u]
    Flatten[Position[d, 1]]  (* A248634 *)
    Flatten[Position[d, 2]]  (* A248635 *)

A248634 Numbers k such that A248633(k+1) = A248633(k) + 1.

Original entry on oeis.org

5, 8, 11, 13, 16, 18, 20, 23, 25, 27, 29, 31, 34, 36, 38, 40, 42, 44, 46, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Examples

			(A248633(k+1) = A248633(k)) = (2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1,... ), so that A248634 = (5, 8, 11, 13, ... ) and A248635 = (1, 2, 3, 4, 6, 7, 9, 10, 12, ...).
		

Crossrefs

Programs

  • Mathematica
    z= 300; p[k_] := p[k] = Sum[(h^2/4^h), {h, 1, k}];
    d = N[Table[20/27 - p[k], {k, 1, z/5}], 12];
    f[n_] := f[n] = Select[Range[z], 20/27 - p[#] < 1/8^n &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248633 *)
    d = Differences[u]
    Flatten[Position[d, 1]]  (* A248634 *)
    Flatten[Position[d, 2]]  (* A248635 *)

A248636 Least k such that 33/8- sum{(h^3)/3^h, h = 1..k} < 1/4^n.

Original entry on oeis.org

7, 9, 10, 12, 13, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

This sequence provides insight into the manner of convergence of sum{(h^3)/3^h, h = 1..k} to 33/8. The difference sequence of A248636 entirely of 1s and 2s, so that A248637 and A248638 partition the positive integers.

Examples

			Let s(n) = 33/8- sum{(h^3)/3^h, h = 1..n}.  Approximations follow:
n ... s(n) ........ 1/4^n
1 ... 3.79167 ... 0.250000
2 ... 2.90278 ... 0.062500
3 ... 1.90278 ... 0.015625
4 ... 1.11265 ... 0.003906
5 ... 0.59825 ... 0.000976
6 ... 0.30195 ... 0.000244
7 ... 0.14511 ... 0.000061
8 ... 0.06798 ... 0.000015
9 ... 0.03004 ... 0.000004
a(2) = 9 because s(9) < 1/16 < s(8).
		

Crossrefs

Programs

  • Mathematica
    z = 300; p[k_] := p[k] = Sum[(h^3/3^h), {h, 1, k}];
    d = N[Table[33/8 - p[k], {k, 1, z/5}], 12]
    f[n_] := f[n] = Select[Range[z], 33/8 - p[#] < 1/4^n &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248636 *)
    d = Differences[u]
    v = Flatten[Position[d, 1]] (* A248637 *)
    w = Flatten[Position[d, 2]] (* A248638 *)

A248637 Numbers k such that A248636(k+1) = A248636(k) + 1.

Original entry on oeis.org

2, 4, 7, 8, 10, 12, 14, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 61, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Examples

			(A248636(k+1) = A248636(k)) = (2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2,... ), so that A248637 = (2, 4, 7, 8, 10, 12, 14, ... ) and A248638 = (1, 3, 5, 6, 9, 11, 13, ...).
		

Crossrefs

Programs

  • Mathematica
    z = 300; p[k_] := p[k] = Sum[(h^3/3^h), {h, 1, k}];
    d = N[Table[33/8 - p[k], {k, 1, z/5}], 12]
    f[n_] := f[n] = Select[Range[z], 33/8 - p[#] < 1/4^n &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248636 *)
    d = Differences[u]
    v = Flatten[Position[d, 1]] (* A248637 *)
    w = Flatten[Position[d, 2]] (* A248638 *)
Showing 1-8 of 8 results.